Mineral Resource Evaluation of the U.S. Forest Service Sierra Demonstration Project Area, Sierra National Forest, California GEOLOGICAL SURVEY PROFESSIONAL PAPER 714 MINERAL RESOURCE EVALUATION, U.S. FOREST SERVICE SIERRA DEMONSTRATION PROJECT AREA High-altitude view of the Sierra Demonstration Project area from the south. The four prominent lakes in the middleground are manmade hydroelectric reservoirs (from left to right: Mammoth Pool, Huntington Lake, Lake Thomas A. Edison, Florence Lake). Mono Lake in background. ## Mineral Resource Evaluation of the U.S. Forest Service Sierra Demonstration Project Area, Sierra National Forest, California By J. P. LOCKWOOD, P. C. BATEMAN, and J. S. SULLIVAN GEOLOGICAL SURVEY PROFESSIONAL PAPER 714 A geological appraisal of the mining and recreational potential of public lands in part of the San Joaquin River basin, Sierra Nevada ### UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary **GEOLOGICAL SURVEY** V. E. McKelvey, Director Library of Congress-catalog card no. 70-60090 #### CONTENTS Page | Mineral resources—Continued | Abstract | 1 | Known mineral occurrences—Continued | Page | | | |--|--------|---|------|--|--| | Introduction | 1 | Pick and Shovel mine | 10 | | | | Purpose of the investigation | 1 | Placer gold deposits of Kaiser Creek. | 11 | | | | Location and general features | 1 | Placer gold deposits of Mill Creek | 13 | | | | Geochemical investigation | 3 | Quartz | 14 | | | | Sampling program | 3 | Sand and gravel | 14 | | | | Analytical methods and procedures | 4 | Ornamental stone | 14 | | | | Previous studies | 4 | Distribution of metals in the Sierra Demonstration | | | | | Acknowledgments | 5 | Project area | 14 | | | | Geologic features | 5 | Gold | 15 | | | | Metamorphic rocks | 5 | Tungsten | 15 | | | | Granitic rocks | 6 | Copper | 15 | | | | Volcanic rocks | 6 | Silver | 15 | | | | Joints | 7 | Tin | 15 | | | | Unconsolidated deposits | 7 | Mclybdenum | 28 | | | | Glacial deposits | 7 | Other metals | 28 | | | | Lake and stream deposits | 7 | Evaluation of mineral resource potential | 28 | | | | Pumice | 8 | Geologic features as natural resources | 29 | | | | Mineral resources | 8 | Glacial features | 29 | | | | Relation of mineral deposits to geology | 8 | Volcanic features | 29 | | | | Known mineral occurrences | 8 | Mineral springs | 30 | | | | Tungsten mines and prospects along Kaiser | | Gold deposits | 30 | | | | Ridge | 8 | References | | | | | | | | | | | | FRONTISPIECE. High-altitude view of the Sierra Demonstra | tion P | roject area. | Page | | | | FIGURE 1. Map showing location of the Sierra Demonstrat | ion Pr | oject area | 2 | | | | | | res of the Sierra Demonstration Project area | 2 | | | | | | ed dike along a joint near Bear Diversion Dam | 7 | | | | | | ens Granodiorite 1 mile west of Mono Hot Springs | 7 | | | | | | lode claims | 9 | | | | | | n of quartz pods along joints in the vicinity of the Pick and | | | | | | | | 12 | | | | | | old mining area | 13 | | | | | | | 13 | | | | 9-14. Generalized geologic maps of the Sierra Demon | | | | | | | | | | 16 | | | | | | | 18 | | | | | | | 20 | | | | | | | 22 | | | | | | | 24 | | | | | | | 26 | | | | • | | | | | | VI CONTENTS #### TABLES | | | | Page | |-------|----|--|------| | TABLE | 1. | Spectrographic and chemical analyses of composite samples from the Lucky Blue claims | 10 | | | 2. | Spectrographic and chemical analyses of samples from the Pick and Shovel mine | 11 | | | 3. | Spectrographic and chemical analyses of samples from the Sierra Demonstration Project area | 32 | #### **GLOSSARY** Alkali feldspar. Potassium- or sodium-rich feldspars (microcline, orthoclase, albite, anorthoclase, and so forth). Alluvium. Unconsolidated sediment deposited by rivers and streams. **Batholith.** A very large mass of granitic rocks. Most batholiths are composed of numerous plutons. Colluvium. Slope wash, talus, and other unconsolidated debris that covers bedrock exposures. Detrital. Describes rocks or mineral grains formed by the disintegration and erosion of older, preexisting rocks. Diorite. A granitic rock composed of sodic plagioclase and biotite, hornblende or pyroxene, and lacking appreciable potassium feldspar. Foliation. Planar structure in any rock. **Granitic.** Describes medium- to coarse-grained quartz-bearing igneous rocks which have cooled slowly at depth. **Granodiorite.** A granitic rock composed of quartz, sodic plagioclase, biotite, hornblende, and a little potassium feldspar. Hornfels. A very fine grained fiinty metamorphic rock formed from shale or marl. **Igneous.** Applied to crystalline or glassy rocks which have formed by cooling of once-molten rock. Joint. A straight or slightly curved fracture or crack in solid bedrock. Usually found as parallel or subparallel sets. Lode deposit. A mineral deposit found within solid bedrock. Magma. Molten rock that generally contains suspended crystals. Marble. A dense crystalline rock formed by the metamorphism of limestone or dolomite. **Mesozoic.** An era of geologic time extending from about 65 to 235 million years ago, Metamorphic. Pertains to rocks that have been recrystallized as a result of heat and pressure. Metamorphism. The process of rock alteration by heat and pressure. Moraine. Bouldery sediment transported and deposited by glaciers. Lateral moraines are ridges of bouldery material deposited along the sides of glaciers. Paleozoic. An early era of geologic time extending from about 235 to 570 million years ago. **Pegmatite.** Very coarse grained dike rocks consisting principally of quartz and feldspar. **Pelitic hornfels.** Dense fine-grained rock formed by the thermal metamorphism of shale. Phenocryst. A crystal in an igneous rock, which is much larger than surrounding crystals. Phenocrysts in granitic rocks are generally potassium feldspar. Placer deposit. A deposit of heavy minerals concentrated in unconsolidated sediments by water or wind. **Pleistocene.** An epoch of geologic time extending from about 10,000 to 2-3 million years ago and characterized by widespread and repeated episodes of glaciation. Pluton. An individual body of intrusive igneous rock with its own individual characteristics and history of emplacement. **Pumice.** A highly vesicular form of volcanic glass, so light that it will generally float on water. Quartz monzonite. A light-colored granitic rock composed of biotite, quartz, and nearly equal amounts of sodic plagioclase and potassium feldspar. Quartzite. A dense rock composed of quartz grains cemented by quartz. Schist. A medium- to coarse-grained metamorphic rock in which numerous parallel flakes of mica or other platy minerals cause the rock to split into slabs and plates. Tactite. A dark rock formed from limestone or other carbonate rock by reaction with fluids from an intruding igneous magma. **Trachybasalt.** A dark volcanic rock that contains potassium feldspar. # MINERAL RESOURCE EVALUATION OF THE U.S. FOREST SERVICE SIERRA DEMONSTRATION PROJECT AREA, SIERRA NATIONAL FOREST, CALIFORNIA By J. P. Lockwood, P. C. Bateman, and J. S. Sullivan #### ABSTRACT The known geologic history of the 240,000-acre Sierra Demonstration Project area covers about half a billion years and records a complex sequence of sedimentary deposition, volcanism, metamorphism, granitic intrusion, erosion, and glaciation. Metal deposits of the project area are of three kinds: contact metasomatic deposits formed within the bodies of metamorphic rock by reaction with fluids associated with invading magmas, vein deposits formed along regionally widespread joints that cut the metamorphic and granitic bedrocks, and placer deposits found along streams or the courses of former streams. To evaluate the mineral potential of each of these types of deposits, we visited and sampled all known mines and prospects and conducted a detailed geochemical sampling program over the entire area to determine the distribution of metals and to locate any anomalous metal concentrations. Samples of 599 stream sediments and of 159 bedrock and miscellaneous materials were collected and analyzed for 30 metallic elements. No large mineral deposits suitable for major commercial exploitation are now known or are likely to be found in the foreseeable future in the Sierra Demonstration Project area. Small tungsten deposits on Kaiser Ridge have been mined and are being further explored. Small low-grade deposits of placer gold along Kaiser Creek are being worked sporadically. Very small deposits containing high concentrations of copper. lead, molybdenum, silver, and zinc occur along a mineralized joint system in the northeast corner of the Sierra Demonstration Project area, but their restricted extent and difficult access make exploitation economically unattractive at the present time. Nonmetallic mineral resources of the project area include quartz, ornamental stone, and sand and gravel. Because similar products are available much closer to market areas, these resources are not likely to be exploited. Several geologic features are of recreational and educational value and can be considered resources for people today and for future generations. These include volcanic flows and ash falls, hot-spring deposits, glacial moraines, and other features. #### INTRODUCTION #### PURPOSE OF THE INVESTIGATION The public lands of the United States contain the nation's principal recreational and wildlife areas and important reserves of timber, water, forage, minerals, and other natural resources. Public need for all these resources places different and frequently conflicting demands upon the public lands. The U.S. Forest Service is deeply concerned that the National Forests be utilized to their fullest extent under the multiple-use concept.
Accordingly, it established the Sierra Demonstration Project to develop rapid and accurate means for obtaining the basic resource information required for intelligent management decisions. This project is designed to explore the feasibility of obtaining all required resource information concurrently, using up-to-date technological methods from several engineering and scientific disciplines (Swinnerton, 1969). To evaluate the mineral potential of the Sierra Demonstration Project area, the U.S. Forest Service asked the U.S. Geological Survey early in 1969 to conduct a mineral survey of the area. A cooperative program between the two agencies was initiated, and a field survey was undertaken during the summer of 1969. In addition to the Sierra Demonstration Project area proper, the survey covered a wedge of land to the west between the project area and the San Joaquin River. Henceforth, this expanded area will be referred to as the project area. The results of our survey of that area are contained herein. #### LOCATION AND GENERAL FEATURES The Sierra Demonstration Project area is 60 miles northeast of Fresno, Calif., about midway between Yosemite and Kings Canyon National Parks on the gentle west slope of the central Sierra Nevada (fig. 1). It includes the Kaiser Peak 15-minute quadrangle and the west half of the Mount Abbot 15-minute quadrangle (figs. 1, 2). Most of the project area is in Fresno County, but the northwest corner extends into Madera County. The area is in the north half of the Sierra National Forest, and the east one-third lies within the John Muir Wilderness. The total area, which includes the area between the west side of the project area proper and the FIGURE 1.—Location of the Sierra Demonstration Project area. FIGURE 2.—General physiographic and cultural features of the Sierra Demonstration Project area. INTRODUCTION San Joaquin River, encompasses approximately 405 square miles (1,025 km²). All the project area lies within the drainage basin of the San Joaquin River, the South Fork of which flows northwestward through the central part of the area. Mono Creek and Bear Creek are principal tributaries to the South Fork within the project area. Along the north edge of the area, north-flowing Silver and Fish Creeks drain basins on either side of Silver Divide. In the southwestern part of the area, Kaiser Creek drains the north flank of Kaiser Ridge, and Big Creek drains the south flank. At higher elevations many small natural lakes fill depressions created by glacial erosion during Pleistocene alpine glaciation, but the four largest lakes in the area (frontispiece) are manmade reservoirs for hydroelectric power projects. Most elevations within the project area are 6,500 to 9,500 feet above mean sea level, although elevations rise to 12,349 feet at Mount Hooper, 4 miles northeast of Florence Lake, and drop to 2,450 feet where the San Joaquin River flows out of the area at the southwest corner. The upper part of the South Fork of the San Joaquin River flows in a broad glacially modified valley, but downstream the river is entrenched in a narrow canyon 1,600 feet deep. Precipitation ranging from 24 to 32 inches per year is primarily snow at higher elevations and rain at lower elevations (U.S. Weather Bureau, 1959). Forests of ponderosa, jeffrey, and lodgepole pine along with red and white fir cover most of the area. Logging is currently being carried on in the Kaiser Creek basin. At lower elevations shrubs such as manzanita, Sierra chinquapin, and mountain white-thorn are common. Willows, quaking aspen, and alder line many streams. At highest elevations glacial erosion has exposed large areas of bedrock, and the sparse soil-covered areas support only alpine vegetation. State Highway 168 from Fresno ends at Huntington Lake, near the south boundary of the project area (fig. 2). Continuing on from the northeast corner of Huntington Lake into the project area is a narrower one- to two-lane blacktop road which leads over Kaiser Ridge through 9,175-foot-high Kaiser Pass into the basin of the South Fork of the San Joaquin. One branch of this road ends at Lake Edison and the other at Florence Lake. By late 1971, this road had been widened and improved nearly to Kaiser Pass. Beyond Kaiser Pass the road is narrow and steep, which tends to limit the number of people entering the area. On the other hand, it is adequate for passenger car traffic and offers a highly scenic drive into this undeveloped country in the heart of the Sierra Nevada. The other route into the area is an unpaved, graded road that begins near the town of Big Creek southwest of Huntington Lake and extends northward along the east valley wall of the San Joaquin River into the Kaiser Creek basin. This road provides access to recreational areas along the San Joaquin River and Kaiser Creek and is also used by logging trucks. Branching from these two roads are a few unimproved roads suitable mainly for 4-wheel-drive vehicles. All roads into the area are closed by snow during the winter months. A network of trails for hikers and horseback riders crosses the area. The John Muir Trail crosses the east edge of the area close to the crest of the Sierra Nevada. #### GEOCHEMICAL INVESTIGATION A program of geochemical sampling was carried out to gain information that might bear on the origin of the known mineral deposits and to evaluate the potential of the project area for undiscovered mineral resources. This program involved extensive collection of both bedrock and stream-sediment samples and laboratory analysis to determine metal content. #### SAMPLING PROGRAM Before any samples were collected, a sampling pattern was laid out for both stream sediments and bedrock. Initially, we planned to collect about one stream-sediment sample per square mile, and about one bedrock sample per 8-square-mile area, but early analytic results indicated the need for more samples of both kinds. We collected 599 stream-sediment samples and 108 samples of typical bedrocks, the latter including 84 granitic rocks, 14 metamorphic rocks, and 10 volcanic flows. In addition, we collected 50 other samples, including nine from lode deposits that have been worked, 23 from unexplored quartz veins, six of altered bedrock, six of mineral-spring precipitates, and six of miscellaneous materials. The samples of typical bedrock were taken primarily to establish regional patterns of metal content that might affect the compositions of the stream sediments. Stream-sediment samples reflect the metal content of watershed areas rather than local rock units; so many samples were collected just above stream junctions in order to evaluate the metal content of individual drainage basins. Early analyses indicated that stream sediment is not chemically homogeneous at any one place. Metals such as gold, tungsten, iron, chrome, and vanadium are preferentially concentrated in the coarse gravel and boulder-rich parts of the streambed, whereas copper and molybdenum are most highly concentrated in fine sand and mud. To obtain comparable samples at each locality, approximately one-half the required amount of sieved sand ordinarily was taken from gravel near the bottoms of streams, and one-half was taken from sandbars or mud along stream margins. For large streams, however, it was not always possible to sample bottom gravels owing to high water. This was especially difficult early in the summer, when melt runoff from a record snow-pack (U.S. Weather Bureau, 1969, p. 78, 116) caused very high water levels. Most sand samples were wet sieved at the collecting site with a small set of aluminum sieves consisting of a 20-mesh sieve at the top, an 80-mesh sieve, and a collection cup at the bottom. Some samples were collected in bulk, dried, and sieved several days after being collected. Samples of 10 to 30 grams each were taken from each of the two size fractions and placed in cloth sample bags. Initial chemical analyses of both size fractions indicated that the -80 mesh fraction almost invariably contained higher metal concentrations than the -20, +80 fraction and was thus more sensitive as an indicator of metal anomalies. For this reason only the -80 fraction was ordinarily submitted for analysis. Some -20, +80 fractions were submitted as checks for analytical error. In table 3, the size fraction analyzed is indicated by a numerical suffix. Thus, sample 005-20 is the -20, +80fraction, and 005-80 is the -80 fraction. #### ANALYTICAL METHODS AND PROCEDURES Most of the samples were analyzed chemically and spectrographically for a total of 30 different metallic elements (table 1-3), although 52 of the bedrock samples were only analyzed spectrographically. The chemical analyses, more sensitive and precise than spectrographic analyses, were made for gold, copper, tungsten, and arsenic. The first three elements were considered important potential resources in the project area, and arsenic was considered important as a possible indicator of mineralization in general. Semiquantitative spectrographic analyses were made for 30 elements: silver, arsenic, gold, boron, barium, beryllium, bismuth, calcium, cadmium, cobalt, chromium, copper, iron, lanthanum, magnesium, manganese, molybdenum, niobium, nickel, lead, antimony, scandium, tin, strontium, titanium, vanadium, tungsten, yttrium, zinc, and zirconium. Spectrographic analyses of arsenic, gold, copper, and tungsten are omitted from table 3 because these elements were also analyzed chemically, and calcium, magnesium, and titanium are omitted because they are not significant in this study. Cadmium and antimony are omitted from table 3 because they were not found in any sample. Approximate mean metal contents were calculated for each group of principal sample types analyzed (table 3). Mean values in parentheses are considered unreliable, generally because measureable values are too few for calculation of a representative average. All analyses were performed by Geological Survey
personnel. Chemical analyses were made in Winnemucca, Nev., Denver, Colo., and in a mobile field laboratory based at the High Sierra Ranger Station. All spectrographic analyses were performed in Denver, except for sample 105F and 51 other bedrock samples (with numbers beginning with "A" or "KP"), which were analyzed in Menlo Park, Calif. Samples received by the analytical laboratories were ground if necessary (for example, rock samples) and sieved to -80 mesh size. The following quantities of sample were then removed for analysis: | Spectrographic analysis | 10 | mg | |-------------------------|----|--------------| | Chemical analysis: | | | | Gold | 10 | g | | Copper | 1 | \mathbf{g} | | Tungsten | | 2 g | | Arsenic | | 1 g | The aliquots for gold and copper were dissolved in acid and analyzed by standard atomic absorption techniques (Ward and others, 1969). Lower sensitivities of 0.02 and 10 ppm (parts per million), respectively, were obtained by this method. Tungsten and arsenic contents were determined by colorimetric analysis, as described by Ward, Lakin, Canney, and others (1963, p. 40–44 and 78–79). Minimum sensitivities of these methods are 20 and 10 ppm, respectively. The methods of spectrographic analysis are described by Ward, Lakin, Canney, and others (1963, p. 91–94). #### PREVIOUS STUDIES Geologic study of three quadrangles that cover the project area was nearly completed when this study was begun and provided a sound basis for evaluating the mineral potential of the area. Geologic maps of the Shuteye Peak quadrangle (Huber, 1968) and the Kaiser Peak quadrangle (Bateman and others, 1971) are already published, and a geologic map of the Mount Abbot quadrangle is in final stages of preparation. The first geologic observations of the area were made by members of J. D. Whitney's geological survey party, who traversed the project area in 1864 (Whitney, 1865). A reconnaissance study of the geomorphology and glacial geology of the area was made by F. E. Matthes in the 1930's and published in 1960. A more detailed study of the glacial geology along Mono Creek and the South Fork of the San Joaquin River was made by Birman (1964) at the time of construction of Vermillion Dam (below Lake Thomas A. Edison). Chesterman (1942) described a small area of metamorphic rocks north of Kaiser Peak, and Hamilton (1956) studied the geology of a part of the Demonstration Project area immediately north of Huntington Lake. The geology of the north half of the Mount Abbot quandrangle, including the northeast corner of the Demonstration Project area, has been described by Sherlock and Hamilton (1958). No comprehensive mineral resource surveys had been conducted in the area of the Sierra Demonstration Project prior to this study, although the area has been extensively prospected over the past century, mainly for gold and tungsten. #### ACKNOWLEDGMENTS The U.S. Forest Service provided excellent support during the field investigations. Leigh B. Lint of the Forest Service's Engineering Division was the principal liaison officer between the Geological Survey and the Forest Service and was responsible for coordinating helicopter support and providing aerial photographs. The Forest Service provided 48.1 hours of helicopter flight time in support of our study; the capable helicopter pilotage of Harold Dickey contributed to our success in covering a large area in a very short period. The many courtesies extended by Mr. Lint and by Arnold P. Snyder and Michael P. Goggin of the High Sierra Ranger Station are greatly appreciated. Color aerial photographs of the project area at scales of 1:48,000 and 1:24,000 taken during the summer of 1968 for the Forest Service, greatly facilitated our field investigations. They were invaluable in locating areas of mineralized or otherwise anomalous rock formations, enabled us to plan helicopter landing sites, and greatly facilitated cross-country foot traverses over difficult terrain. Frank E. Barr assisted field operations for 1 month under the sponsorship of the National Science Foundation Research Observer Program for secondary school instructors. Ronald J. Fitzhugh assisted in the sampling program and is largely responsible for compilation of the extensive geochemical data. Messrs. Floyd T. Wilmoth and Lawrence C. Wehmeyer kindly showed us their mining claims and allowed us to sample their workings. #### **GEOLOGIC FEATURES** The Sierra Demonstration Project area is near the center of the Sierra Nevada batholith, a large composite body of granitic rock that makes up about 80 percent of the bedrock of the Sierra Nevada. Metamorphic rocks older than the batholith underlie the remainder of the Sierra Nevada. The geology of the Sierra Nevada and the Sierra Nevada batholith was described by Bateman and Wahrhaftig (1966) and by Bateman and Eaton (1967). Readers desiring more-detailed information will find numerous references to technical studies in these publications. Rocks of the project area can be broadly divided into four principal groups: (1) old, pregranitic metamorphic rocks, (2) granitic rocks, (3) much younger volcanic formations, and (4) very young unconsolidated sedimentary deposits that overlie bedrock and include both stream and glacial deposits. The distribution of the major bedrock units is shown in figures 9–14. #### METAMORPHIC ROCKS The pregranitic rocks include all the sedimentary and volcanic rocks into which the granitic magmas were intruded. These rocks were metamorphosed by heat and pressure, which preceded and accompanied the emplacement of granitic magma. All these metasedimentary rocks and most of the metavolcanic rocks are conspicuously stratified, and although they were deposited originally in horizontal or gently dipping layers, they have been strongly folded and faulted and in most exposures dip steeply or are vertical. The metamorphic rocks must have been more widespread before the extensive erosion that followed emplacement of the granitic rocks. Although not very abundant in the project area, the metamorphic rocks are favorable hosts for metallic ore deposits and are of particular importance in this investigation. The metamorphic rocks include an older group of metasedimentary rocks and a younger group of metavolcanic rocks. The metasedimentary rocks were derived by the erosion of an ancient landmass and were deposited in Paleozoic seas 575–235 m.y. (million years) ago, when shallow seas covered much of western North America. These strata were folded, faulted, and eroded before the overlying metavolcanic rocks were deposited. Remnants of metasedimentary rocks include numerous masses along Kaiser Ridge and the eastern part of the Mount Morrison roof pendant, which extends into the northeast corner of the project area. The principal rocks along Kaiser Ridge are quartzite, hornfels, and marble. The most common rock in the part of the Mount Morrison roof pendant within the project area is hornfels. The metavolcanic rocks were deposited across the metasedimentary strata after these strata had been deformed and then truncated by erosion, during the early and middle Mesozoic, 235–135 m.y. ago. They include metamorphosed lava flows, pyroclastic deposits, associated dikes and sills, and sedimentary rocks that were derived from the volcanic rocks by rapid erosion shortly after deposition. Remnants of metavolcanic rocks occur north of Silver Divide, northeast of Lake Edison, northeast of Florence Lake, and in the western part of the Mount Morrison roof pendant. The most common meta- volcanic rocks are light- to dark-gray mica schists, some of which stain orange on weathering. They were formed by the recrystalization of volcanic ash beds and associated lava flows. Typical metavolcanic rocks are exposed along the Bear Creek trail at and above Bear Diversion Dam. Dark metavolcanic schists that form the top of Red and White Mountain in the Mount Morrison roof pendant can be viewed from near the High Sierra Ranger Station. #### **GRANITIC ROCKS** The granitic rocks underlie about 95 percent of the project area. They intruded the older, folded and faulted sedimentary and volcanic rocks as molten or partly molten magma. The granitic rocks of the project area consist of at least 20 different plutons, most of which were intruded and solidified at different times. For this report, the plutons have been grouped into seven map units (figs. 9-14). These plutons are divisible into two principal age groups: a younger group that was emplaced 90-79 m.y. ago and an older group that was emplaced more than 100 m.y. ago (Evernden and Kistler, 1970). The plutons of the older group includes three geographically separated units: (1) the granodiorite of Dinkey Creek in the southwestern part of the project area, (2) a pluton of quartz monzonite northeast of Florence Lake, and (3) the alaskite of Graveyard Peak north of Lake Edison. The relative ages of these plutons are not known, since the plutons are nowhere in contact with one another. The largest of these older plutons is the granodiorite of Dinkey Creek. Rocks of this pluton are light to medium gray and nearly everywhere contain abundant dark inclusions of biotite and hornblende diorite. In most places the granodiorite of Dinkey Creek is separated from the Mount Given Granodiorite, which belongs to the younger group, by the metasedimentary rocks of Kaiser Ridge. Radiometric age dates from the granodiorite of Dinkey Creek range from 115 to 104 m.y. (Evernden and Kistler, 1970). A few older, small plutons of granodiorite and quartz monzonite along the west margin of the project area are included with the granodiorite of Dinkey Creek in figures 9–14. The quartz monzonite of Bear Dome northeast of Florence Lake is generally fine grained and forms prominent topographic features such as Bear Dome, Jackass Dike, and The Tombstone. Much of this pluton is rimmed by the light-colored metavolcanic rocks of Bear Creek. The alaskite of Graveyard Peak is a
large mass of very light colored granite along the north margin of the project area. This rock, which commonly weathers to red orange, forms the Vermillion Cliffs northeast of Lake Edison. Also included as alaskite in figures 9-14 are numerous small bodies of other old rocks that range in composition from gabbro to granodiorite. Age relations among the younger (90–79 m.y.) group are well known. The oldest pluton of this group is the Lamarck Granodiorite, a narrow body which crops out northeast of the Bear Creek metavolcanic rocks. This granodiorite, widespread south of the project area, is medium grained, contains abundant dark inclusions, and is typified by large well-formed crystals of black hornblende. In the southeast corner of figures 9–14, a body of porphyritic quartz monzonite similar to the quartz monzonite of Recess Peak has been included with the Lamarck Granodiorite. Next oldest is the Mount Givens Granodiorite, which underlies the entire basin of the San Joaquin River between Kaiser Ridge and Lake Edison. The Mount Givens Granodiorite is one of the largest single plutons in the Sierra Nevada batholith and extends several miles to the north, south, and west of the project area. This granodiorite is exposed in nearly all the roadcuts from Kaiser Pass to Florence and Edison Lakes. Texturally the Mount Givens is a variable rock, although in most places it is light gray and medium grained equigranular and contains scattered dark discoidal inclusions. Along much of the west margin of the project area, ½-1-inch-size phenocrysts of potassium feldspar are abundant, and dark inclusions are absent. Next oldest of the 90-79 m.y. group is the granodiorite of Lake Edison. This pluton trends northwest-southeast across the northeastern part of the project area and forms the east shores of Lake Edison. It is generally fine grained and is characterized by abundant small crystals of honey-colored sphene. Along its margins much of this pluton is light colored and has the composition of quartz monzonite. The youngest pluton of this group is the quartz monzonite of Recess Peak, in the northeast corner of the project area. This unit is the coarsest grained of all granitic rocks in the project area and typically contains 5-20 percent of giant phenocrysts of potassium feldspar, which are as much as 4 inches long. Although all in situ exposures of this quartz monzonite are far from roads, large boulders of this rock are common in glacial moraines near Lake Edison. #### **VOLCANIC ROCKS** After the granitic rocks cooled and solidified, the Sierra Nevada was uplifted in various episodes, and several miles of overlying rock was removed by erosion, exposing the levels of granitic rocks we see today. About 10 m.y. ago, volcanic activity resumed in the Sierra Nevada, and it has continued into historical times. In the project area, volcanoes along Silver Divide and upper Mono Creek erupted about 3½ m.y. ago (Dalrymple, 1963) and poured moderately large quantities of trachybasalt lava into low-lying areas. Feeder pipes for these volcanoes are present east of Pincushion Peak and on Volcanic Knob. Erosion has removed the superstructure of the volcanoes as well as most of the lava flows which must have once covered much of the San Joaquin River's South Fork valley. Remnants of the flows crop out along the South Fork valley, Silver Divide, and Mono Creek. #### JOINTS Conjugate joints are well developed in the bedrock of most parts of the project area and are among the most prominent structural features observable in aerial photographs of this region (frontispiece, especially near Florence Lake). The joints average about N. 40° E. and N. 20° W. in strike and dip steeply, but the range of attitudes is wide. They were formed several million years ago by regional stresses after consolidation of the granitic rocks; many are the loci of later small-scale strike-slip faults (fig. 3). Longer and more conspicuous joints contain crushed and altered rock that erodes to form low-lying linear trenches along which soil, brush, and timber are concentrated. Shorter and less conspicuous joints are well exposed in nontimbered areas, and many contain narrow veinlets of quartz, epidote, and chlorite (fig. 4). These veinlets are of potential economic importance, since they commonly contain minor amounts of ore minerals. #### UNCONSOLIDATED DEPOSITS #### GLACIAL DEPOSITS During the Pleistocene, most of the project area was repeatedly covered by thick alpine glaciers. These ice FIGURE 3.—Right-lateral offset of a fine-grained dike along a joint near Bear Diversion Dam. Note quartz vein along the joint. masses transported enormous quantities of rock downhill and greatly modified the topography of the region. Deposits of glacially transported till, moraine, and outwash cover approximately 15 percent of the project area, but are not shown in figures 9–14. The engineering properties of these glacial deposits are important to construction activities, and persons interested in their distribution should refer to detailed geologic maps of this area (see section on "Previous Studies") and to the report of Birman (1964). #### LAKE AND STREAM DEPOSITS Since the last glacial recession, lakes at higher elevations have accumulated only small amounts of silt and clay. A few lakes at lower elevations have, however, been completely filled with sediment and now are beautiful Figure 4.—Mineralized joints in Mount Givens Granodiorite 1 mile west of Mono Hot Springs. The joints are filled with narrow (1/32-1/4 inch) quartz veins and are bordered by alteration zones 1/2-11/2 inches wide, which are resistant to erosion and stand out in relief. Joints strike N. 20° E. mountain meadows such as Graveyard Meadows north of Lake Edison. Most streams have only minor accumulations of gravel and sand, and large alluvial deposits have developed only along the San Joaquin River. Stream sediments are of economic interest since those in the western part of the project area contain placer gold. #### **PUMICE** Violent eruptions in the Mammoth Lakes region several hundred years ago ejected tremendous volumes of white rhyolite pumice, which was carried southward by winds into the east half of the project area. In the northeastern part of the area, waterlogged pumice makes up a large fraction of the stream sediments; however, the amount of pumice decreases southward, and at Kaiser Pass only scattered fragments are present in sheltered pockets in bedrock. #### MINERAL RESOURCES #### RELATION OF MINERAL DEPOSITS TO GEOLOGY Metalliferous deposits of the Sierra Demonstration Project area fall into two groups—lodes (formed and found within the granitic and metamorphic bedrock of the area) and placers (heavy minerals transported and concentrated by streams). The lode deposits are of two kinds: contact metasomatic deposits found only in metamorphic rocks and vein deposits that occur in both the metamorphic and granitic rocks. The contact metasomatic deposits were mainly formed by hot, metal-bearing fluids that emanated from cooling granitic magma and reacted with and partly replaced metamorphic rocks along or near granitic contacts. Such processes formed the tungsten deposits of Kaiser Ridge and also may account for anomalies of tungsten, copper, gold, tin, and zinc associated with other metamorphic rock masses (table 3). The concentration of some metals may also have been locally enhanced by hot, circulating fluids, which redistributed metals originally present in small amounts throughout the metamorphic rocks. Sulfide-bearing quartz veins that cut metavolcanic rocks along Bear Creek may have such an origin. The vein deposits postdate the granitic rocks and were formed by metal-bearing solutions that migrated upward along a system of regional joints. Many of these joints are actually small faults and show small amounts of lateral offset (fig. 3). They cut metamorphic and granitic bedrock alike. The veins along these joints consist principally of quartz, epidote, and chlorite, and commonly contain small grains of pyrite, molybdenite, argentiferous galena, and other sulfide minerals. The veins range in width from less than one-sixteenth inch to about 6 feet; most are between one-fourth and 1 inch wide. They generally are bordered by alteration zones much wider than the veins themselves. These alteration zones, in which plagioclase is converted to epidote, albite, and sericite, and mafic minerals to chlorite, are more resistant to weathering than the surrounding unaltered granite and typically stand out in relief (fig. 4). These mineralized veins are most abundant in the northeast half of the project area. The placer deposits are related to bedrock geology only indirectly—they formed downstream from a bedrock source. Local topography is more important than bedrock lithology in controlling the distribution of placer deposits. All placer deposits in the project area are along segments of stream courses or former stream courses where the gradient is low; placer concentrations are uncommon where the gradient is steep and streamflow rapid. #### KNOWN MINERAL OCCURRENCES #### TUNGSTEN MINES AND PROSPECTS ALONG KAISER RIDGE Like most of the tungsten deposits in the Sierra Nevada, deposits in the project area are all of contactmetasomatic origin (Bateman, 1965, p. 123-150). Such deposits form when hot aqueous solutions given off by bodies of cooling and crystallizing granitic magma react with marble and other calcareous country rocks. Contact metasomatism of this kind produces a dark silicate rock, tactite (or skarn), composed chiefly of pyroxene of the diopside-hedenbergite series, garnet of the grossularite-andradite series, quartz, and epidote. Some tactite contains scheelite (CaWO₄), the only important tungsten-bearing mineral in contact-metasomatic deposits; tactite may also contain metallic sulfides and oxides of potential economic importance. Many tungsten ores contain less than 1 percent WO₃, so the
small amount of scheelite required for commercial exploitation may be visible only under ultraviolet light. Within the project area scheelite-bearing tactite occurs along Kaiser Ridge, where the tactite hosts are calcareous rocks in the metamorphic septum that separates the granodiorite of Dinkey Creek on the south and west from the Mount Givens Granodiorite on the north and east. Marble and calc-silicate-hornfels are common along a 5-mile span that extends from near the center of the NE½ sec. 34, T. 7 S., R. 26 E. (about 1 mile north of the Forest Service campground of Badger Flat) northeast to near Pryor Lake (unnamed on the Kaiser Peak quadrangle topographic map) in the S½NE¼ sec. 13, T. 7 S., R. 26 E. Prospect pits are common throughout this span of the septum, especially near Twin Lakes (Chesterman, 1942), but the only reported production has been from the unpatented Lucky Blue claims held by Mr. Floyd T. Wilmoth of Sunset-Whitney Ranch, Calif. A search of mining records at the Fresno County Recorder's Office in April, 1970, revealed no other tungsten claims for which current notices of annual assessment work have been filed. The Lucky Blue claims cover the northwest third of the exposures of calcareous rocks (fig. 5). Claims 4 and 5 can be reached by a private road from the Forest Service campground at Sample Meadows, and the other claims are readily accessible from this road. Mr. Wilmoth estimates that tungsten ore valued at approximately \$50,000 was produced from claims 4 and 5 during and following the Korean War (1951-56). Much of this production was from glacial erratics that were scattered along the ridge that extends north from the location cuts of the two claims. Most of the exposed scheelite-bearing boulders have been mined, and we saw only one, which appeared under ultraviolet light to contain several percent WO₃. Ore was also shipped from the location cuts on these two claims, according to Mr. Wilmoth. The principal metamorphic rocks in the vicinity of these opencuts are conspicuously crossbedded white quartzite, pelitic hornfels, and calc-silicate hornfels. Tactite pods formed principally in limestone or calcareous interbeds within the quartzite. At each opencut the tactite is adjacent to dikes and irregular bodies of pegmatite, a relationship suggesting strongly that the tactite is genetically associated with the emplacement of the pegmatite magma, which probably was saturated with water. Night inspection by ultraviolet light of claims 3, 4, and 5 (which contain the highest grade ore now exposed, according to Mr. Wilmoth) revealed that scheelite is limited to a few small areas several square feet in extent within and adjacent to the opencuts. Examination of the metamorphic rocks between the opencuts revealed only a few small areas of tactite that contains scheelite. Within the mineralized zones scheelite is irregularly distributed in grains that range from pinpoint size to half an inch in diameter. The coarsest scheelite is exposed on chain 3. Only pinpoint-size grains were found on claim 4, but pyrite, chalcopyrite, sphalerite, galena, and magnetite were also present there in irregular streaks and masses. We obtained composite samples from each of the three opencuts by chipping across each face at different levels, being careful to obtain an even distribution of chips. We took two samples each from claims 4 and 5, and one from claim 3. One sample from claim 4 (2532A) consists mainly of sulfides, and the other (2532B) is FIGURE 5.—Area surrounding the Lucky Blue lode claims. Locations of the claims are plotted from maps supplied by F. T. Wilmoth. Location cuts are near centers of claims. Area of this figure shown in figure 9. chiefly tactite, although both sulfides and silicates are present in both samples. Our first sample from claim 5 (2533A) proved to be from barren rock when the opencut was examined under ultraviolet light, so we took a second sample (2533B) of the highest grade ore ex- posed. The samples were analyzed chemically for gold, copper, arsenic, and tungsten and spectrographically for a wide variety of elements (table 1). The analyses show that only on claim 3 is tungsten ore of commercial grade present at the surface. Claim 4 contains only trace amounts of tungsten but significant amounts of copper, lead, and zinc. Nevertheless, the surface extent of the mineralized areas on all three claims is too small to permit accurate estimates of inferred ore reserves. Table 1.—Spectrographic and chemical analyses of composite samples from the Lucky Blue claims [Spectrographic analyses by G. W. Day; chemical analyses by R. E. Culbertson, J. G. Frisken, J. R. Hassemer, R. L. Miller, and M. S. Rickard. Values reported in parts per million; these values can be converted to weight percent by dividing by 10,000 (for example, 20 ppm=0.002 percent and 600 ppm=0.06 percent). Numbers in pareutheses after each element indicate usual lower determination limit. Explanation of symbols: N, not detected; L, present but below determination limit; G, greater than value shown] | Element | Spectro-
graphic | Chemical | C | | | | | | | | |-----------|---------------------|----------|---------------------------------|----------------------|---------------------------------|----------------------|---------------------------------|----------------------|---------------------------------|----------------------| | Element | analyses | analyses | Spectro-
graphic
analyses | Chemical
analyses | Spectro-
graphic
analyses | Chemical
analyses | Spectro-
graphic
analyses | Chemical
analyses | Spectro-
graphic
analyses | Chemical
analyses | | Ag (0.5) | | | 20 | | N | | N | | N | | | As (10) | | 10 | N | 10 | N | \mathbf{L} | N | ${f L}$ | N | 10 | | Au (0.02) | N | . 08 | N | . 02 | N | 0. 02 | N | 0.02 | N | . 0 | | 3 (10) | 100 | | 70 | | L | | L | | 10 | | | Ba (20) | 100 | | 300 | | 1, 500 | | 700 | | N | | | Be (1) | 7 | | 5 | | N | | N | | N | | | Bi (10) | 70 | | N | | N | | N | | N | | | Cd (50) | 500 | | 150 | | N | | N | | N | | | Co (5) | 500 | | 50 | | 5 | | 5 | | 10 | | | Cr (5) | 5 | | 20 | | 100 | | 100 | | 30 | | | Cu (10) | 2,000 | 1, 700 | 1, 000 | 1, 000 | 7 | \mathbf{L} | 7 | \mathbf{L} | 50 | 64 | | Fe (500) | G200.000 | , | 150, 000 | -, | 50, 000 | | 100, 000 | | 100, 000 | | | La (20) | Ĺ | | L | | | | | | Ĺ | | | Mn (10) | | | G5,000 | | 5, 000 | | G5, 000 | | G5, 000 | | | Mo (5) | | | | | L | | | | 200 | | | Nb (10) | | | | | 15 | | 7 | | 20 | | | Ni (5) | | | | | Ň | | | | Ň | | | Pb (10) | | | | | 30 | | | | 100 | | | Sc (5) | | | 10 | | | | | | 7 | | | Sn (10) | 70 | | 50 | | 100 | | | | 70 | | | Sr (100) | | | | | 200 | | | | 200 | | | (10) | | | 400 | | 70 | | 70 | | 100 | | | W (20) | | L | Ň | L | Ň | 20 | 700 | 600 | 10, 000 | 2,000 | | Y (10) | | | | | | | : | | 50 | -, 000 | | Zn (200) | G10 000 | | | | | | 11.2 | | N N | | | Zr (10) | | | | | _ | | | | 200 | | #### PICK AND SHOVEL MINE The Pick and Shovel mine is within the John Muir Wilderness in the northeastern part of the project area (fig. 2). The mine property consists of seven unpaterted claims east of Minnow Creek in the northwest corner of the Mount Abbot quadrangle. The claims, held by G. T. Burns, B. Baldwin and L. C. Wehmeyer of Clovis and Coalinga, Calif., were filed in 1952 on the site of earlier prospect pits. The principal workings are on a hillside near the center of the area covered by the claims (sample loc. 105 in fig. 9) and consist of a drift approximately 125 feet long, which intersects a vertical shaft approximately 80 feet deep. These workings follow a quartz vein system that strikes N. 50° E. and dips 80°-85° NW. Where the vein system is exposed in faces on the drift, it consists of several narrow ½-4-inch-wide red-stained quartz veins in highly altered granite. The width of this veined zone ranges from 3 to 4 feet in the part of the mine examined. Chemical analyses of three samples from the vein system are given in table 2. Sample 105A is composed of the typical red-stained quartz and shows low values of gold, silver, and lead. Sample 105C is composed of red-stained quartz containing fracture fillings of a yellow, powdery mineral tentatively identified by Mr. Wehmeyer as carnotite and shows relatively high values of lead, vanadium, and zinc. Sample 105F, altered quartz monzonite adjoining the quartz veins, shows almost no significant mineralization other than a small amount of lead. Several tons of ore have been mined and stockpiled near the portal. This ore consists of mineralized quartz containing relatively abundant galena, pyrite, and malachite and lesser amounts of sphalerite, chalcocite, bornite, chalcopyrite, and azurite. Laumontite and stilbite are associated gangue minerals in some specimens. A grab sample composed of numerous small specimens of high-grade ore from the stockpile contains high values of copper, lead, and zinc (table 2, sample 105B). An analysis of one sample of high-grade copper ore containing visible chalcocite (105D) shows 3.6 percent copper, 0.02 percent silver, high content of lead and zinc, and minor amounts of cadmium and gold. Table 2.—Spectrographic and chemical analyses of samples from the Pick and Shovel mine [Spectrographic analyses by D. F. Siems and Chris Heropoulos; chemical analyses by J. G. Viets. Values reported in parts per million. Numbers in parentheses after each element indicate usual lower determination limit. Explanation of symbols: N, not detected; L, present but below determination limit; G, greater than value shown] | Element - | 105A, vein quartz | | 105B, grab sample of high-
grade ore | | 105C, vein quartz | | 105D, high-grade copper ore | | 105F, altered quartz
monzonite | | |----------------------------|---------------------------------|----------------------|---|----------------------|---------------------------------|----------------------
--|-------------------|-----------------------------------|----------------------| | | Spectro-
graphic
analyses | Chemical
analyses | Spectro-
graphic
analyses | Chemical
analyses | Spectro-
graphic
analyses | Chemical
analyses | Spectro-
graphic
analyses | Chemical analyses | Spectro-
graphic
analyses | Chemical
analyses | | Ag(0.5) | 2 | | | | 10 | | 200 | | N | | | $\operatorname{As}(10)_{}$ | \mathbf{N} | N | N | $\mathbf L$ | N | ${f L}$ | N | 10 | N | | | Au(0.02) | N | . 04 | N | $\mathbf L$ | N | 0.06 | Ŋ | . 06 | N | | | B(10) | 10 . | | | | 10 | | 10 | | N | | | Ba(20) | | | | | -00 | | 70 | | | | | Be(1)
Bi(10) | | | | | 2 N | | 10 | | N
N | | | Cd(50) | | | | | N N | | $\begin{array}{c} 10 \\ \text{G500} \end{array}$ | | N | | | Co(5) | | | 300 -
10 | | Ŧ | | G500 | | 3 | | | Cr(5) | | | 5 | | ī. | | ŭ | | 1. 5 | | | $\operatorname{Cu}(10)$ | 30 | 34 | 3, 000 | 3, 200 | 500 | 230 | G20, 000 | 36, 000 | 3 | | | Fe(500) | 50,000 | | | | | | | | 20,000 | | | La(20) | N . | | | | N. | | N | | 50 | | | $\operatorname{Mn}(10)_{}$ | | | 100 _ | | 700 | | 100 | | 1, 000 | | | Mo(5) | | | N _ | | \mathbf{N} | | Ñ | | Ŋ | | | $Nb(10)_{}$ | | | L _ | | \mathbf{L} . | | L | | 7 | | | Ni(5) | | | | | 5 . | | 5 | | N | | | Pb(10) | - | | G20, 000 _ | | , , , , , | | 10, 000 | | $\frac{200}{30}$ | | | $Sc(5)_{}$
$Sn(10)_{}$ | | | 3.7 | | 7.7 | | N | | N
N | | | Sr(100) | Ţ., | | | | 4.00 | | Ŋ | | 500 | | | V(10) | 20 | | 10 | | 200 | | 20 | | 30 | | | W(20) | Ň | L | N - | L | N | L | Ň | L | Ň | | | $Y(10)_{}$ | Ň. | | 3.7 | | | | 3.7 | | 10 | | | Zn(200) | 3.7 | | G10, 000 _ | | | | G10, 000 | | N | | | Zr(10) | 4 0 0 | | , a. | | ′ ~~ | | | | 150 | | According to Mr. Wehmeyer, most of the high-grade ore on the stockpile was taken from an inaccessible incline below the present mine level. The ore body apparently was pod shaped. The present mining operation, carried on sporadically during the summer, is directed toward the discovery of either an extension of this body or new bodies. The mineralizing solutions that formed the Pick and Shovel deposit and other veins nearby moved along a steeply dipping regional joint system that strikes N. 35°-55° E. in this area. In many places the quartz veins typically found along these joints widen abruptly to form small (2-4 in. maximum length) pockets of redstained quartz in which sulfides, especially galena and pyrite, are visible. These pockets are irregularly distributed along individual joints and are nowhere very abundant. Some of these mineralized pockets appear to have formed by replacement of wallrock, but most have formed through fillings of voids left by differential lateral movement between the rock on either side of the joint (fig. 6). The main ore body at the Pick and Shovel mine probably formed by this process, although on a larger scale. Other ore pockets similar to the one mined probably exist along the Pick and Shovel joint system, but they are probably distributed erratically and will be expensive to find, develop, and mine. #### PLACER GOLD DEPOSITS OF KAISER CREEK Kaiser Creek, in the southwest quarter of the project area, has been the site of sporadic small-scale placer mining for about 100 years. Early records are sparse but indicate that gold was discovered along Kaiser Creek prior to 1880. The earliest published reference to these placers (Burchard, 1882, p. 33) stated, Rich gravel deposits are reported along the banks of Keyser Gulch. The bed of the creek was rich, and was mined out years ago, but the banks were never extensively prospected. The deposits now being opened are said to indicate an ancient river channel, which has not hitherto been discovered in the country. U.S. Bureau of Land Management survey plats of 1882-85 show that "old miner's cabins" and "old mining ditches" existed at that time. Today, all that remains of these old workings are a few gravel piles overgrown with yellow pine along lower Kaiser Creek in the vicinity of Kaiser Diggings Guard Station. Small placer operations were conducted along Kaiser Creek in the early part of this century (Bradley, 1915, p. 444-445), and during the Depression many people reportedly subsisted through placer mining from Sample Meadow to the San Joaquin River. Records at the Fresno County Recorder's Office indicate that the only presently active claim in the area (April, 1970) is the Rose-Kay claim on lower Kaiser Creek 1½ miles southwest of Kaiser Diggings Guard Station. John L. Dodge and Weldon Millis of Fresno hold this claim. Chemical analyses of stream-sediment samples from Kaiser Creek show anomalous concentrations of gold along a span of about 6 miles—from near Sample FIGURE 6.—Mechanism responsible for formation of quartz pods along joints in the vicinity of the Pick and Shovel mine. Direction of offset along joints is shown by small arrows, relative movement between blocks by large arrows. The length of these pods varies from less than 2 inches to more than 2 feet. Although the pod is shown as though it were continuously filled with quartz, voids were no doubt intermittently present as the fracture opened. Meadows to a point about 2 miles upstream from the junction with the San Joaquin River. Sieved stream sediments from this part of Kaiser Creek contain as much as 13 ppm gold, and panned concentrates show as much as 34 ppm. Free gold was observed in about half the panned samples but was extremely fine (most grains were less than 400 microns in diameter). Panning of modern stream sediments indicates little gold is presently being moved by Kaiser Creek; however, good colors can be panned from beneath large boulders or from bedrock crevices under roots. Good colors were also panned from colluvium several feet above the present stream level. One local resident, whom we observed operating a small sluice box on an unclaimed part of middle Kaiser Creek, reported recovering \$3-\$7 in gold per day from bedrock crevices high on the banks of the creek. The sparseness of quartz veins near Kaiser Creek and the fact that the one local vein analyzed (table 3, sample 208) contains no gold suggest distant sources for this metal. At Kaiser Diggings the creek occupies a relatively flat catchment basin ideally situated to entrap gold carried in from any source. Any gold reaching the basin probably remained behind and became concentrated as less dense, more easily disintegrated detritus was washed away. The gold appears to have been transported into this basin by a combination of glacial and stream transport processes. An observed association of gold and tungsten in the stream sediments along Kaiser Creek suggests that Kaiser Ridge was once source (figs. 10, 12), for the tungsten was almost certainly derived from there. Floyd T. Wilmoth states that a single narrow quartz vein on his Lucky Blue tungsten claims north of Kaiser Ridge had a high gold content. Low concentrations of gold (0.02-0.04 ppm) in stream sediments near Kaiser Ridge indicate a weak anomaly along most of the ridge but do not suggest that any major deposit is currently being eroded. If commercial lode deposits were ever present, they have been eroded away, and if the placer gold at Kaiser Diggings came from Kaiser Ridge, it was probably concentrated from small discontinuous lode deposits of no commercial importance, such as may still be present. Kaiser Ridge was not the only source of placer gold, however. Sediment samples collected well north of Kaiser Creek (figs. 9, 10, samples 213, 1082, 1083) contain as much as 0.63 ppm gold, and this gold could not have been transported by the streams that now drain the ridge. Some of this gold could have been carried from distant eastern sources by glaciers that once flowed down the South Fork of the San Joaquin River. Birman (1964) mapped older glacial deposits along the north side of Kaiser Creek; these deposits indicate that large amounts of potentially auriferous glacial material derived from the east once covered the Kaiser Creek drainage. Most of the Kaiser Creek gold was apparently mined prior to 1880, when records of small producers were poorly kept, and almost no production records were found for these placers. The only production figures found, for 1940, were 7 ounces of gold and 3 ounces of silver (U.S. Bureau of Mines, 1933–68). A comparison of the Kaiser Creek area with similar placer districts of the southern Sierra Nevada indicates total gold production to date from Kaiser Creek of probably 500 ounces or less, but certainly less than 1,000 ounces (M. G. Johnson, oral commun., 1970). All easily worked gold deposits of economic significance along Kaiser Creek appear to have already been evaluated and mined, and it is unlikely that any major deposits remain. Small amounts of gold are present, however, and small placer operations and recreational gold panning will probably be carried on for many years to come. #### PLACER GOLD DEPOSITS OF MILL CREEK Mill Creek, near the west margin of the project area northwest of Kaiser Creek, has also yielded small amounts of gold. Vestiges of a former placer operation indicate that mining was restricted to a half-mile segment of the creek just above Mammoth Pool Reservoir. It is not known exactly when the area was worked, but refuse around a large cabin still standing at the site indicates activity between 1920 and 1940, probably during the Depression. The Mill Creek placer deposits are on a relatively flat bluff 500 feet above the San Joaquin River (fig. 7). The principal workings at the older placer operation are several trenches cut into thick soil cover on the ridge north of Mill Creek. These trenches (fig. 8), presently 3-8 feet deep and as much as 250 feet long, are mostly oriented in north to northwest directions, transverse to the ridge crest. Large quantities of soil were apparently moved to Mill Creek for sluicing. Gravel
piles along the creek indicate that stream sediments were also placered. The only gold detected in our samples from the Mill Creek area, 1.4 ppm, was in a panned concentrate of soil (227-P) from near the trenched area north of lower Mill Creek. Ten stream-sediment samples (three of them panned) from Mill Creek and its tributaries contain less than 0.02 ppm gold. Analyses of a sample of granitic bedrock and of a quartz vein upstream from the Mill Creek placers likewise show no gold. The absence of gold upstream from this deposit (fig. 10) indicates that gold in the soil cover was not derived from present-day Mill Creek headwaters. Nor is there any indication that the gold is derived from in situ FIGURE 7.—Lower Mill Creek gold mining area. Contours from the U.S. Geological Survey topographic map of the Shuteye Peak quadrangle, 1953 edition (before filling of Mammoth Pool Reservoir). Area of this figure shown in fig. 9. FIGURE 8.—Mining trenches north of Mill Creek. Yellow pine and brush in trenches indicate age of workings. weathering of a lode deposit in the granitic rocks of the ridge. Quartz veins are scarce on the ridge: an analysis of the bedrock (sample 225, table 3) shows no gold anomaly, and geologic mapping indicates no geologic features that would favor a lode deposit in this area (Huber, 1968). The Mill Creek deposit is probably an erosional remnant of a very old bench placer that was formed several million years ago along the ancestral San Joaquin River. Doubtless river gravels once were present, but they have been removed by erosion, leaving behind the gold they contained. During a long period of weathering and erosion this gold apparently mixed with upper parts of a deep soil that formed from the underlying granitic bedrock. Some of this gold may have been secondarily concentrated downslope in the gravels of Mill Creek. No production figures were found for the Mill Creek of the project area even though Minerals Yearbooks for the years 1932–35 and 1938 indicate a production from "Mill Creek" of 102.62 ounces of gold and 9 ounces of silver (U.S. Bureau of Mines, 1933–68). Microfilm copies of original Bureau of Mines records indicate, however, that this "Mill Creek" is a different stream, 40 miles to the south, north of Dunlap. The gold remaining in the Mill Creek area is very sparse, and recovery of additional gold does not appear economically feasible. The Mill Creek deposit is, however, geologically important as an example of a type of gold placer that may exist elsewhere along the San Joaquin River. Any flat or dissected river-cut bench along the San Joaquin River could contain placer gold deposits of the Mill Creek type. #### QUARTZ Quartz deposits in the project area are of two types: (1) numerous small quartz veins that cut metamorphic and granitic bedrock and (2) older quartz-pegmatite segregations related to late stages in cooling and crystallization of the granitic rocks. Only the quartz pegmatite masses are large enough and pure enough to be of potential economic value. The Medley quartz claims, near Pincushion Peak, have been explored by Mr. John Medley, who reported having sold several shipments of quartz of piezoelectric quality. The unpatented Medley quartz claims are on the west slope of Pincushion Peak at about 8,600 feet elevation. A road has been opened to the mine area, considerable overburden has been removed, and a shallow shaft sunk. The quartz is highly fractured and is embedded in a matrix of white clay that has resulted from weathering of originally abundant alkali feldspar. The quartz consists of both clear rock crystal and smoky quartz. A few large thin blades of a resinous mineral tentatively identified as ilmenite occur in some quartz crystals. Although the bedrock is very highly weathered and a thick soil has developed, it is still apparent that this deposit is part of a quartz-core pegmatite dike that cuts the grandodiorite of Lake Edison. The dike ranges in thickness from 3 to 4 feet, strikes about N. 60° W., and dips 5°-25° N. Quartz appears to be concentrated near the footwall of the dike. The weathered dike is exposed over a length of about 80 feet, but its extent at depth is unknown. A comparison with other pegmatites of the project area suggests that this mass may have been lens shaped; if so its extent at depth probably does not exceed 80 feet. The site was inactive in 1969. Other large masses of quartz are exposed 1 mile west of the Pick and Shovel mine (along the contact between the alaskite of Graveyard Peak and the quartz monzonite of Recess Peak) and on the east slope of the prominent ridge 1 mile east of Devil's Bathtub. These deposits consist predominantly of milky quartz of no economic value. #### SAND AND GRAVEL Small deposits of sand and gravel are found along stream bottoms and in areas of glacial outwash. Other local deposits include the tailings from construction of Ward Tunnel under Kaiser Ridge. No commercial use is made of these materials except by summer residents for concrete aggregate. #### ORNAMENTAL STONE The coarse- to medium-grained granitic rock found over much of the project area is a potential source of dimension and ornamental stone but is of no commercial value owing to the remoteness of the area and to the presence of similar rock at more accessible localities. Small deposits of travertine are found locally around hot mineral springs. Most of this rock is soft and punky, but at some localities, particularly along the San Joaquin River north of Crater Lake (near sample 180, fig. 9), small amounts of dense beautifully banded yellow and orange onyx are present in the precipitates of inactive hot springs. The onyx deposits are too small and inaccessible for commercial exploitation, but could provide small amounts of ornamental stone for hobbyists. ### DISTRIBUTION OF METALS IN THE SIERRA DEMONSTRATION PROJECT AREA The chemical analyses of stream-sediment and bedrock samples provide a detailed picture of the distribution of metallic elements throughout the project area. In conjunction with geologic considerations, these analyses indicate that of the 30 metals for which analyses were made (see section "Analytical Methods and Procedures"), only gold, tungsten, copper, silver, tin, and molybdenum have possible economic importance in this area. The locations of samples and the abundance of these six elements are shown in figures 9–14. The data in figures 10–14 are taken from tables 1–3. The distribution of arsenic was also plotted because initially we thought it might serve as a tracer, but we found no correlation between its abundance and the abundance of more valuable metals. In many places arsenic appears to reflect the presence of arsenic-rich mineral springs. #### GOLD Analyses of metamorphic bedrock show traces (up to 0.08 ppm) of gold. The highest bedrock gold content, 0.90 ppm, is from a single sample (169) of volcanic breccia on Volcanic Knob. This content is unexplainably high and may be the result of sample contamination. Analyses of quartz veins in the project area showed gold content to range from less than 0.02 ppm to only 0.08 ppm. The relative abundance of gold in the stream sediments does not appear to be closely dependent on bedrock lithologies but instead depends on physiography and the complex transport mechanisms of streams and glaciers. Chemical analyses of stream sediments show that small amounts of gold (0.02-0.20 ppm) are widespread throughout much of the area. Concentrations higher than these are rare; most are restricted to the Kaiser Creek basin, the bench placer north of Mill Creek, streams immediately north of Huntington Lake (samples 3022, 3023), and the San Joaquin River below Mono Hot Springs (sample 004). Areas in which most stream gravels contain low amounts of gold (0.02-0.20 ppm) are 1 mile northeast of Mount Givens, a large area northwest and west of Lake Edison, the area surrounding Hoffman Meadow north of Kaiser Creek, and the east end and south slope of Kaiser Ridge. #### TUNGSTEN Among the bedrock samples, tungsten in measurable amounts is found only in samples of metamorphic rocks on the Lucky Blue claims (see section "Tungsten Mines and Prospects Along Kaiser Ridge"), in two mineral-spring precipitates (003 and 1149), in one sample of Mount Givens Granodiorite (1033), and in two samples (068 and 165) of quartz veins, which contain 600 and 480 ppm, respectively. The tungsten-bearing mineral in these veins was not identified. Most quartz veins analyzed contain little or no tungsten. The distribution of tungsten in stream sediments clearly is related to the presence of metamorphic rocks upstream. Thus, high tungsten concentrations occur downstream from all metamorphic rocks except the metavolcanic rocks at the northeastmost corner of the area. High tungsten concentrations are also found in sediments from the North Fork of the San Joaquin River and from Granite Creek (figs. 9, 12, samples 193, 195, 1150). These values probably reflect metamorphic rocks and tungsten deposits northwest of the project area. Low tungsten values at other scattered localities probably reflect detrital tungsten-bearing minerals that were carried from distant metamorphic rock sources by glaciers. #### COPPER Copper contents of granitic bedrock samples range from less than 10 ppm in many granodiorites to 190 ppm in a hornblende gabbro (sample 116); the granitic rocks average 12 ppm. Metamorphic rocks contain up to 186 ppm copper (sample 204) and average 27 ppm. Most quartz veins analyzed contain 10–50 ppm copper and one (sample 1111) contains 2,400 ppm. Small amounts (10-20 ppm) of copper are widespread in stream sediments of the project area. These amounts are not anomalously high and generally can be explained by the presence of detrital concentrations of such minerals as hornblende and magnetite, which commonly contain copper in trace amounts, and by small amounts of copper adsorbed on clay minerals and organic matter
(Hawkes and Webb, 1962, p. 122-125). Most stream-sediment samples from part of the area southeast of Pincushion Peak and northwest of Lake Edison, however, contain relatively high amounts of copper (to 88 ppm). Quartz veins are scarce in this area, and no sign of copper mineralization at the surface was noted. This area of high copper content is centered on a large mass of the granodiorite of Edison Lake and surrounds a central facies of coarse-grained rock known as the quartz monzonite of Rock Creek Lake (Bateman and others, 1971). The copper anomaly here is probably explained by a slightly higher than normal copper content in these underlying granitic rocks. #### SILVER With the exception of a metavolcanic schist (sample 204), an anomalous diorite dike rock (sample 231), and two mineralized rocks (samples 118, 127), the country rocks in the project area contain no detectable silver, and most quartz veins contain only minor amounts (to 100 ppm), probably in argentiferous galena. Silver also is very sparse in stream sediments of the project area. It was detected in only 13 sediment samples, in amounts ranging from 0.5 to 2 ppm. Stream-sediment samples with high silver contents are from the northeast and southwest corners of the area. The silver in the southwest is probably alloyed with placer gold, whereas silver in the northeast appears related to abundant small argentiferous veins developed along northeast-southwest trending joints (p. 7). #### TIN Tin is rare in bedrock of the area and has been identified only in tactite samples from the Lucky Blue tungsten claims (samples 2532–34), in one metavolcanic rock (sample 204), in one hot-spring tufa deposit (sample 003), in one sample of vein quartz (sample 1111), FIGURE 9.—Locations of chemically analyzed samples in the Sierra Demonstration Project area. Reference grid numbers along figure margins included as aid to locate samples listed in table 3. FIGURE 10.—Distribution of gold in the Sierra Demonstration Project area. Reference grid numbers along figure margins included as aid to locate samples listed in table 3. FIGURE 11.—Distribution of silver and tin in the Sierra Demonstration Project area. Reference grid numbers along figure margins included as aid to locate samples listed in table 3. FIGURE 12.—Distribution of tungsten in the Sierra Demonstration Project area. Reference grid numbers along figure margins included as aid to locate samples listed in table 3. Figure 13.—Distribution of copper in the Sierra Demonstration Project area. Spectrographic data are shown for a few bedrock samples listed samples for which chemical analyses are unavailable. Reference grid numbers along figure margins included as aid to locate in table 3. FIGURE 14.—Distribution of molybdenum in the Sierra Demonstration Project area. Values of less than 10 ppm not shown. Refer ence grid numbers along figure margins included as aid to locate samples listed in table 3. and in one specimen of altered diorite (sample 217). Nowhere was it found in sufficient abundance to be considered a potential resource. Most stream sediments of the project area contain less than 10 ppm of tin. Thirty-four stream-sediment samples that contain 10 ppm or more are chiefly from streams that drain Kaiser Ridge, streams near a small quartz monzonite body east of Hoffman Meadow, the San Joaquin River and Warm Creek west of Lake Edison, and from streams in the vicinity of the Pick and Shovel mine. #### MOLYBDENUM Molybdenite, the principal ore mineral for molybdenum, is present in silicified and chloritized joints throughout the project area and is a common minor constituent of veins in the northeast half of the area. The molybdenum content of some small veins is as high as 1,500 ppm (sample 1111). Molybdenum is largely restricted to these narrow veins, and there is no evidence for molybdenum mineralization of surrounding wallrocks. Although most samples of granitic bedrock contain no detectable molybdenum, one sample of Mount Givens Granodiorite (1148) does contain 10 ppm molybdenum and several samples of the alaskite of Graveyard Peak contain as much as 15 ppm molybdenum. One sample of metavolcanic schist (204) contains 50 ppm molybdenum, and mineral-spring deposits contain a maximum of 50 ppm. No deposits of commercial size or grade were found in the project area, although according to Mr. Jeff Winslow of Mono Hot Springs (oral commun., 1969), prospectors have developed small pits and recovered minor amounts of molybdenite from chlorite-rich mineralized joints near Chamberlain Lake, in the southeast corner of the project area. A streamsediment sample downstream from this area (067) contains 100 ppm molybdenum, the highest value reported from any stream in the project area. Molybdenum in the range from 5 ppm (lower sensitivity limit) to 50 ppm is, however, present in most stream sediments of the project area, except in those southeast of Kaiser Ridge. These values are significantly higher than the average values of 0.1-1 ppm reported for clastic sediments by Hawkes and Webb (1962, p. 369) and suggest a low molybdenum anomaly in the area. Only values of 10 ppm or greater are plotted in figure 14. #### OTHER METALS In addition to the six metals described above, 19 others are listed in table 3, and their distribution can be plotted. Informal plots of these other elements show that none of them occur in concentrations suggesting potential resources in the project area. Among these other metals, lead is one of the most interesting, as it appears to be a sensitive indicator of the presence of mineralized veins. Lead is present in all stream sediments of the area in amounts generally ranging from 20 to 50 ppm. Amounts higher than this are unusual and are mostly found near the northeastmost corner of the project area, where galena-bearing veins are most abundant. Sediments from a small stream draining the Pick and Shovel mine area, for example, contain 700 ppm lead, and a sample from Minnow Creek, a major stream draining the northeast corner of the area, contains 300 ppm lead downstream from the Pick and Shovel mine. Zinc also has potential as an indicator of mineralized areas, but the high threshold sensitivity value (200 ppm) inherent in our analytical technique made evaluation by this element relatively useless in this study. Most high zinc values in streams are from areas near roads and bridges, where the zinc was probably derived from introduced contaminants, such as galvanized metal and batteries. The extraordinarily high value reported in stream sediment north of Huntington Lake (sample 3055) must reflect contamination, as high values do not appear downstream. Some zinc mineralization has occurred along the contact between the Mount Givens Granodiorite and metavolcanic rocks near Bear Creek Diversion Dam (table 3, sample 073 and 2031), and in tactites and diorite in the northeast corner of the area (samples 119, 120, and 217). Iron content aids in interpreting concentrations of certain other elements in stream samples and also in comparing analyses with one another. "Black sand" concentrates of heavy minerals such as magnetite, ilmenite, hornblende, and zircon tend to have higher than normal concentration of associated heavy-mineral elements such as gold, chromium, iron, lanthanum, vanadium, tungsten, and zirconium. The iron content, plotted first among the spectrographic analyses of table 3, is an excellent indicator of the degree to which heavy minerals have been concentrated in each sample, either through panning or natural stream processes. High iron content implies abundant magnetite and indicates that the concentration of associated heavy elements is generally higher than in stream sediment with low "black sand" content. #### EVALUATION OF MINERAL RESOURCE POTENTIAL Our study indicates that no mineral deposits of major commercial importance are present in the Sierra Demonstration Project area. The only mining claims in the area that are being worked are the Lucky Blue tungsten claims on Kaiser Ridge, the Rose-Kay gold placer claims on lower Kaiser Creek, the industrial quartz claims on Pincushion Peak, and the Pick and Shovel mine claims north of Silver Divide. None of these is patented, and the average annual production is very small. At each of these claims small amounts of minable ore exist, but it is doubtful that any of them have sufficient reserves to support large-scale mining operations. Each of the known metallic deposits in the project area is accompanied by moderate to strong metal anomalies in downstream sediments (or associated sediment in the case of placer gold). Our geochemical sampling program would have indicated the presence of each of these deposits had they not already been known to exist. With the exception of low copper and molybdenum anomalies, no other significant metal anomalies were found in the project area, so it is unlikely that large ore deposits will be discovered in the future. Small bodies of tungsten-bearing tactite may be found associated with the metamorphic rocks of the project area, low-grade placer gold deposits may be found along streams at lower elevations, and small deposits of copper, lead, molybdenum, silver, or zinc ore may be found associated with the widespread quartz veins in the northeast third of the area; however, none of these potential deposits could be expected to support major mining. #### GEOLOGIC FEATURES AS NATURAL RESOURCES The tens of thousands of people who visit parts of the project area every year pass by some of the most interesting and educational geological features of the Sierra Nevada, but most visitors are unaware of this. These tourist features may have greater long-range value than the mineral resources of the project area. The following is a brief summary of a few of the geological features of general interest. #### **GLACIAL FEATURES** At least 90 percent of the project area was covered by ice at one time or another during the
ice ages of the Pleistocene Epoch. The Pleistocene Epoch lasted for more than 2 million years and ended with the retreat of the last glaciers only about 10,000 years ago, so relics of those cold and forbidding times abound. Enormous trunk glaciers a thousand feet thick flowed down both the main San Joaquin River and its South Fork, cutting deeply into underlying rocks and depositing bouldery lateral moraines along their margins. Smaller alpine glaciers were widespread along Kaiser Ridge, Silver Divide, and the east margin of the project area and carved U-shaped valleys and steep-walled cirque basins, now occupied by glacial lakes. Giant boulders, some weighing a hundred tons, were left behind by these glaciers as they retreated; these erratics now litter much of the landscape. Some of these huge ice-transported boulders can be seen along the road to Florence Lake in the immediate vicinity of the High Sierra Ranger Station. A few hundred feet east of the station, south of the road to Florence Lake, morainal ridges consisting of glacially transported boulders rest on a granitic bedrock surface that was polished and striated by rock debris carried along by the flowing ice. Standing at this site, one can look directly north and clearly see on the opposite side of the South Fork of the San Joaquin River, 4 miles away, a huge lateral moraine that was deposited along the north margin of the ancient glacier that once occupied the river valley. This moraine extends from near Lake Edison westward for several miles and from a distance appears as a series of brushcovered, boulder-strewn green belts that contrast with the darker timbered areas above and below (frontispiece). If one then were to turn around and look directly south, he would see a steep forest-covered slope rising 1,200 feet above his level. This boulder-covered slope is the matching lateral moraine that formed on the south side of the glacier; this moraine is most clearly seen looking back from near Lake Edison. It takes little effort to imagine the flowing sea of thousand-foot-thick ice which once covered the South Fork between these two moraines. #### VOLCANIC FEATURES About three and a half million years ago, before the ice age of the Pleistocene Epoch, large volcanoes in the project area erupted huge quantities of basaltic lava that flowed downslope and along the ancestral valley of the San Joaquin River, which had not vet cut the deep inner canvon in which it now flows. Although erosion has removed most of this basalt, numerous remnants are preserved at the Brown Cone area near Kaiser Diggings, along Silver Divide from Pincushion Peak to Saddle Mountain, along Mono Creek, and at many localities in the broad valley of the South Fork of the San Joaquin. One of the best exposed and most easily visited remnants is Devil's Table, 1 mile northwest of Mono Hot Springs. Standing near the High Sierra Ranger Station and looking to the north, one can see the columnar-jointed Devil's Table and the high country beyond and can perhaps imagine the river of molten lava which once flowed down into the San Joaquin River from a volcano several miles up Mono Creek. From here other basalt flows can also be seen west of Devil's Table, along Silver Divide, and in the Volcanic Knob area of upper Mono Creek. Visitors to the project area may notice fragments of rhyolite pumice scattered about the ground and concentrated in natural depressions. These fragments are mostly restricted to the east half of the Kaiser Peak and west half of the Mount Abbot quadrangles and are increasingly abundant northward. In some places north of Silver Divide, pumice deposits are more than 1 foot thick. This pumice records a violent volcanic eruption which occurred to the north, in the Mammoth Lakes area, several hundred years ago. Vast quantities of pumice and gas were blown high into the air, and northerly winds carried the fragments southward into and across the project area. Fragments of this pumice can be found in sandy depressions in granitic bedrock at many easily accessible localities, including Kaiser Ridge between Kaiser Pass and Mount Givens and near the High Sierra Ranger Station. #### MINERAL SPRINGS A small area around Mono Hot Springs has long been famous for its mineral baths. Mineral springs also are common along the South Fork of the San Joaquin River from Mono Hot Springs northwestward for about 12 miles, although the springs to the northwest are not as hot as those of Mono Hot Springs. Over several thousand years the mineral waters have built up thick travertine mounds; 2 miles west-northwest of Mono Hot Springs, for example, in a small area on the north bank of the San Joaquin River, brightly colored travertine formations have formed a delicately terraced landscape that is similar to parts of Yellowstone National Park. #### GOLD DEPOSITS The low-grade gold placers along Kaiser Creek (see section "Gold Placer Deposits of Kaiser Creek") have far greater recreational than commercial potential. During this mineral investigation, several families were observed panning gold along the creek. Although no one is likely to recover more than a few cents worth of gold without a major effort, a weekend gold-panning trip can be an enjoyable venture. ### REFERENCES - Bateman, P. C., 1965, Geology and tungsten mineralization of the Bishop district, California: U.S. Geol. Survey Prof. Paper 470, 208 p. - Bateman, P. C., and Eaton, J. P., 1967, Sierra Nevada batholith: Science, v. 158, p. 1407–1417. - Bateman, P. C., Lockwood, J. P., and Lydon, P. A., 1971, Geologic map of the Kaiser Peak quadrangle, central Sierra Nevada, California: U.S. Geol. Survey Geol. Quad. Map GQ-894, scale 1:62,500. - Bateman, P. C., and Wahrhaftig, Clyde, 1966, Geology of the Sierra Nevada: California Div. Mines and Geology Bull. 190, p. 107-172. - Birman, J. H., 1964, Glacial geology across the crest of the Sierra Nevada, California: Geol. Soc. America Spec. Paper 75, 80 p. - Bradley, W. W., 1915, Mines and mineral resources of Fresno County: California Div. Mines and Geology Rept. State Mineralogist no. 14 (for 1913-14), p. 429-470. - Burchard, H. C., 1882, Report of the Director of the Mint upon the statistics of the production of the precious metals in the United States (for 1881): U.S. Bur. Mint, Washington, D.C., 765 p. - Chesterman, C. W., 1942, Contact metamorphic rocks of the Twin Lakes region, Fresno County, California: California Jour. Mines and Geology, v. 38, nos. 3-4, p. 243-281. - Dalrymple, G. B., 1963, Potassium-argon dates of some Cenozoic volcanic rocks of the Sierra Nevada, California: Geol. Soc. America Bull., v. 74, no. 4, p. 379–390. - Evernden, J. F., and Kistler, R. W., 1970, Chronology of emplacement of Mesozoic batholithic complexes in California and western Nevada: U.S. Geol. Survey Prof. Paper 623, 42 p. - Hamilton, W. B., 1956, Geology of the Huntington Lake area, Fresno County, California: California Div. Mines and Geology Spec. Rept. 46, 25 p. - Hawkes, H. E., and Webb, J. S., 1962, Geochemistry in mineral exploration: New York, Harper and Row, 415 p. - Huber, N. K., 1968, Geologic map of the Shuteye Peak quadrangle, Sierra Nevada, California: U.S. Geol. Survey Geol. Quad. Map GQ-728, scale 1:62,500. - Matthes, F. E., 1960, Reconnaissance of the geomorphology and glacial geology of the San Joaquin Basin, Sierra Nevada, California: U.S. Geol. Survey Prof. Paper 329, 62 p. - Rinehart, C. D., and Ross, D. C., 1964, Geology and mineral deposits of the Mount Morrison quadrangle, Sierra Nevada, California: U.S. Geol. Survey Prof. Paper 385, 106 p. - Sherlock, D. G., and Hamilton, W. B., 1958, Geology of the north half of the Mt. Abbot quadrangle, Sierra Nevada, California: Geol. Soc. America Bull., v. 69, no. 10, p. 1245–1268. - Swinnerton, J. R., 1969, The Sierra Demonstration Project— Land resource inventory and engineering surveys using photogrammetry: Arlington, Va., U.S. Dept. Agriculture, Forest Service, Div. Eng., 15 p., app. 8 p. - U.S. Bureau of Mines, 1933-68, Minerals yearbook (annual volumes, 1932-68): Washington, U.S. Govt. Printing Office. - U.S. Weather Bureau, 1959, Climates of the States, California: Climatography of the United States, no. 60-4, 46 p. - Ward, F. N., Lakin, H. W., Canney, F. C. and others, 1963, Analytical methods used in geochemical exploration by the U.S. Geological Survey: U.S. Geol. Survey Bull. 1152, 100 p. - Ward, F. N., Nakagawa, H. M., Harms, T. F., and VanSickle, G. H., 1969, Atomic-absorption methods of analysis useful in geochemical exploration: U.S. Geol. Survey Bull. 1289, 45 p. - Whitney, J. D., 1865, Geological survey of California, report of progress and synopsis of the field work from 1860 to 1864: California Geol. Survey, Geology, v. 1, 498 p. Table 3.—Spectrographic and chemical analyses of samples | Sample | Coord | inates | Chen | ical a | nalyses | (ppm) | Semiq | uantitati | ve speci | Lrograph | ic analy | ses (ppm | ,) | |--|---------------------------------|---------------------------------|-----------------------------|------------------------|---------------------------|-------------------------|---|-----------------------|---------------------------|---------------------------------|-----------------------------|-------------------|----------------------------| | | X | Y | Au
(.02) | Cu
(10) | ۸s
(10) | W
(20) | Fe
(500) | Ag
(0.5) | B
(10) | Ва
(20) | Ве
(1) | B;
(10) | C o
(5) | | | | | | | | Stre | am sediment | <u>s</u> | | | | | | | 001-20
001-80
004-20
004-80
005-20 | 275
275
266
266
263 | 169
169
169
169
167 | L
L
1.2
L | L
L
L
L | 20
10
20
10
L | L
L
40
L | 100,000
150,000
70,000
200,000
20,000 | N
N
N
N | 10
10
10
10
L | 700
500
500
100
300 | L
L
L
L |
N
N
N
N | 10
10
5
10
5 | | 005-80
006-20
006-80
007-20
007-80 | 263
259
259
258
258 | 167
171
171
171
171 | L
L
L
L | 10
L
L
L | 10
L
N
N | L
10
L
L | 20,000
70,000
100,000
20,000
50,000 | N
N
N
N | L
L
L
L | 300
500
300
500
500 | L
L
L
L | N
N
N
N | 5
10
10
5
10 | | 008-20
008-80
009-20
009-80
010-20 | 252
252
296
296
269 | 158
158
206
206
217 | .02
L
L
.02 | L
L
L | N
N
N
N | L
L
L
L | 20,000
50,000
100,000
6200,000
20,000 | N
N
N
N | L
10
L
20
L | 300
300
500
100
500 | L
L
L
L | N
N
N | 5
10
10
20
5 | | 010-80
011-P
012-P
013-20
013-80 | 269
106
109
109 | 217
203
199
199 | L
L
L
13.0 | L
10
L
L | 160
N
N
N | L
40
40
L
L | 30,000
200,000
G200,000
30,000
70,000 | N
N
N
N | L
20
50
L
L | 500
L
L
300
300 | L
L
L
L | N
N
N | 5
20
20
L
5 | | 014-P
016-P
018-P
019-P
020-P | 108
104
102
111 | 199
199
191
187
185 | 3.0
L ·
9.7
L
L | L
10
10
L | N
N
N
L | i.
i.
i.
10 | 200,000
200,000
200,000
200,000
200,000 | N
N
N
N | 20
20
20
10 | 50
50
50
50
50 | L
L
L
L | N
20
N
N | 20
20
20
15
20 | | 022-80
023-80
024-20
026-80
027-80 | 208
211
203
192
184 | 301
315
319
313
310 | և
Լ
Լ
Լ | L
L
L
L | N
L
N
L | և
Լ
Լ
Լ | 20,000
30,000
200,000
50,000
30,000 | N
N
N | L
L
20
L
L | 150
200
70
200
300 | L
L
L
L | N
N
N | L
10
20
10
5 | | 028-80
029-80
030-60
031-80
032-80 | 181
175
162
155
151 | 313
318
310
299
297 | L
L
L | L
L
L
L | N
10
N
N | և
Լ
Լ
Լ | 50,000
50,000
30,000
50,000
50,000 | N
N
N | և
Լ
Լ | 300
300
500
200
300 | L
L
L
L | N
N
N | 5
10
10
10 | | 035-80
036-80
037-80
038-80
039-80 | 268
266
262
254
239 | 225
227
227
216
131 | .12
L
L
L | L
20
L
L
L | 10
L
L
L | L
20
L
L
20 | 50,000
G200,000
50,000
100,000 | N
N
N | L
14
L
L | 500
150
500
500
300 | 1.5
N
1.5
1 | N
N
N
N | 10
20
10
15 | | 041-80
042-80
043-80
044-80
045-80 | 244
250
260
251
259 | 136
146
143
136
131 | .20
L
.08
.04 | L
L
L | 10
L
L | և
Լ
Լ
Լ | 30,000
20,000
150,000
30,000
30,000 | N
N
N
N | L
L
L | 500
300
200
300
300 | 1.5
1
1
1.5
1.5 | N
N
N
N | 7
7
15
7 | | 046-80
047-80
048-80
049-80
050-80 | 269
268
267
368
362 | 131
140
152
157
153 | L
L
L
L | L
L
L | L
L
L | L
L
L
L | 70,000
50,000
50,000
20,000
30,000 | N
N
N
N | L
L
L
10 | 300
300
300
500
700 | 1
2
1
1.5
1.5 | N
N
N
N | 15
10
10
L
5 | | 053-30
054-80
055-80
056-80
058-80 | 348
349
353
344
344 | 166
169
181
185
192 | . 02
L
L
L | L
16
L
L | 10
L
L
10
10 | L
L
L
L | 70,000
70,000
30,000
50,000
30,000 | N
N
H
N
N | L
10
15
L | 700
700
300
500
700 | 1
1
1.5
1.5
2 | N
N
N
N | 15
15
7
10 | [Analytical details are discussed in text under "Analytical Methods and Procedures." Lower limits of determination are shown in parenthese below each element in the boxheads. N=not detected, H=interference, L=present but below determination limit, G=greater than value show. Coordinates refer to grid system in figs. 9-14. Results of spectrographic analyses are reported to the nearest number in the series 1, 0.7, 0.3, 0.3, 0.1, o.t. The precision of the reported value is approximately plus 100 percent or minus 50 percent. In unusually favorable materials, concentrations somewhat lower than the values given may be detected. Cd and Sb were looked for, but were not found in any sample from the Sierra Demonstration Project area—Continued | Sample | | | | Semiqu | uantita | tive s | pectrog | raphic | analys | es (ppm) | Contl | nued | | | |--|---------------------------------|-------------------------------|---|-------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|---------------------------------|---------------------------------|-----------------------------|-------------------------|-----------------------------------| | | Cr
(5) | La
(20) | Mn
(10) | Mo
(5) | Nb
(10) | Ni
(5) | РЬ
(10) | Sc
(5) | Sn
(10) | Sr
(100) | V
(10) | Y
(10) | Zn
(200) | Zr
(10) | | | | | | | | Str | eam sed | lments | Conti | nued | | | | | | 001-20
001-80
004-20
004-80
005-20 | 15
30
10
50
L | 70
50
50
50
L | 1,000
700
1,500
1,000
200 | 5
5
L
5
L | 20
20
30
20
L | 10
10
5
10
5 | 20
20
20
10
20 | 10
15
5
15 | L
L
L | 300
200
200
100
100 | 50
200
100
200
20 | 20
20
20
50
L | <u>։</u>
Լ
Լ | 50
500
50
300
L | | 005-80
006-20
006-80
007-20
007-80 | 5
10
30
5
10 | L
50
100
L
50 | 500
700
1,000
500
700 | և
և
և
և | 10
20
20
10
20 | 5
5
10
5 | 30
20
15
20
20 | 7
10
20
5
15 | և
Լ
Լ
Լ | 150
200
200
150
200 | 50
50
70
20
50 | 15
20
30
10
20 | L
L
L | 50
100
300
50
70 | | 008-20
008-80
009-20
009-80
010-20 | 5
10
30
200
10 | L
50
L
L
50 | 200
700
500
500
200 | L
L
7
L | 10
20
20
15 | 10
5
15
15 | 20
20
10
L
20 | 5
10
5
5
5 | <u>.</u> | 150
200
100
100
200 | 20
50
150
200
20 | L
20
20
20
10 | L
L
200
L | 20
100
50
150
L | | 010-80
011-P
012-P
013-20
013-80 | 100
100
200
5
20 | 100
150
100
L
100 | 700
500
300
200
300 | L
10
10
L
5 | 10
30
30
10
20 | 10
10
10
5
5 | 20
L
L
20
20 | 10
20
10
L | 10
L
L | 200
100
100
150
200 | 30
150
200
20
50 | 20
100
50
10
20 | L
L
200
L
L | 200
1,000
1,000
L
300 | | 014-P
016-P
018-P
019-P
020-P | 150
150
150
100
100 | <u>։</u>
Լ
Լ | 300
500
300
200
300 | 5
10
7
5
5 | 20
50
30
20
20 | 20
5
5
5
5 | L
L
L | 15
10
5
10
20 | <u>.</u>
L
L | 100
100
100
L
L | 300
300
300
200
200 | 15
30
30
15 | և
Լ
Լ | G1,000
200
300
70
200 | | 022-80
023-80
024-20
026-80
027-80 | 20
50
70
50
50 | L
70
200
100
50 | 200
300
500
200
300 | 5
10
L
L | 10
10
10
10 | 10
20
20
30
20 | 20
20
L
15
20 | L
10
10
10 | և
Լ
Լ | 70
100
100
100
100 | 20
20
150
50
30 | L
15
20
10 | <u>է</u>
Լ
Լ
Լ | 20
100
100
200
50 | | 028-80
029-80
030-80
031-80
032-80 | 20
20
20
20
30 | և
և
և
և | 500
500
500
700
500 | L
L
L
L | 10
10
20
20
20 | 10
10
10
7
20 | 15
20
20
15
20 | 10
15
10
20
10 | <u>։</u>
և
<u></u>
<u></u>
<u></u> | 200
150
200
150
100 | 50
50
50
50
50 | 10
10
10
20
10 | <u>։</u>
Լ
Լ | 30
20
50
150
100 | | 035-80
036-80
037-80
038-80
039-80 | 100
200
100
150
70 | 50
100
30
150
30 | 1,500
1,500
1,000
3,000
2,000 | L
N
N
5
L | 20
20
10
50
30 | 70
30
20
30
L | 15
N
20
20
15 | 15
10
15
15 | N
N
N | 300
150
500
500
300 | 150
500
200
200
200 | 50
70
20
100
70 | N
N
N
N | 200
1,000
200
1,000 | | 041-80
042-80
043-80
044-80
045-80 | 15
10
100
15
15 | 20
20
50
50
50 | 1,000
700
1,000
1,000 | 5
L
L
5
7 | 15
10
30
30
20 | 5
L
5
5
7 | 20
30
15
30
30 | 15
15
15
15 | N
N
N
N | 300
300
200
300
300 | 150
100
300
150
150 | 30
30
70
50
50 | N
N
N
N | 150
200
1,000
200
100 | | 046-80
047-80
048-80
049-80
050-80 | 20
20
15
7
10 | 70
30
30
30
70 | 2,000
1,000
700
700
1,500 | 5
5
L
7 | 30
15
20
20
30 | 7
5
5
5
L | 20
20
20
30
30 | 30
15
15
5
7 | N
N
N
N | 300
300
300
200
200 | 200
200
150
70
70 | 100
30
30
20
50 | N
N
N
N | 700
150
200
200
200 | | 053-80
054-80
055-80
056-30
058-80 | 50
50
7
20 | 50
30
30
50
50 | 1,000
1,500
700
1,000 | N
N
5
7 |
30
20
20
36
30 | 10
15
5
7
5 | 20
30
30
30
20 | 15
10
15
15 | N
N
H
N | 300
500
200
300
300 | 200
200
70
150
100 | 30
30
20
30
50 | N
N
N | 200
300
150
300
200 | Averages for each group of analyses calculated as arithmetic mean of the reported values, arbitrarily assuming N=O, L=one-half lower determination limit, and G=upper determination limit; parentheses indicate averages were derived from too few values to be reliably represented. Most chemical analyses by J. G. Viets; others by R. N. Babcock, R. R. Carlson, R. E. Culbertson, J. G. Frisken, J. R. Hassemer, H. D. King, R. W. Leinz, R. L. Miller, D. G. Murrey, M. S. Rickard, L. A. Vinnola, and A. W. Wells. Spectrographic analyses by E. F. Cooley, G. W. Day, J. M. Motooka, D. F. Seims, and K. C. Watts] Table 3.—Spectrographic and chemical analyses of samples | Sample | Coord | inates | Chen | ical a | nalyses | (ppm) | Semio | uantita 1 | tive spe | ctrograp | nic analy | yses (ppm |) . | |--|---------------------------------|---------------------------------|-----------------------------|---------------------------|-------------------------|---------------------------|---|-----------------------|----------------------------|------------------------------------|---------------------------|------------------|--------------------------| | | х | γ | Au
(.02) | Cu
(10) | As
(10) | W
(20) | Fe
(500) | Ag
(0.5) | B
(10) | Ва
(20) | Be
(1) | Bi
(10) | Co
(5) | | - | ****************** | | | | St | ream se | dimentsCo | ntinued | | | | | | | 059-80
060-80
061-80
063-80 | 155
136
135
137 | 226
231
244
220 | L
L
. 08
L | L
L
L | L
L
L | L
L
L | 70,000
30,000
30,000
50,000 | N
N
N | L
L
20
L | 700
500
700
700 | 2
1.5
5
2 | N
N
N | 5
5
7
7 | | 064-80 | 322 | 173 | L | L | L | L | 200,000 | N | L | 700 | 1 | N | 15 | | 065-80
067-80
070-80
071-80
074-80 | 349
344
293
295
303 | 134
136
179
175
184 | L
L
L | L
13
L
23 | L
L
L | L
80
20
L
L | 30,000
30,000
6200,000
70,000
30,000 | N
N
N
N | 10
10
L
i
20 | 700
700
700
700
1,000 | 2
3
N
L
1 | K
N
N
N | 7
5
30
15
10 | | 075-80
076-80
077-80
078-80
079-80 | 251
246
233
245
260 | 285
291
295
302
286 | L
L
L
L | L
11
L
10 | 10
L
L
10
L | 4
L
40
L
L | 30,000
30,000
100,000
50,000
50,000 | N
N
N | L
L
L
20 | 500
500
700
700
1,500 | 1.5
2
1.5
1.5 | N
N
N
N | 7
5
10
7
7 | | 080-80
081-80
082-80
083-80
084-80 | 256
257
251
246
247 | 298
303
308
304
303 | .12
L
L
L | L
L
L | L
L
L | L
L
L
L | 30,000
100,000
70,000
50,000
30,000 | N
N
N
N | 10
L
L
L | 700
700
700
700
700 | 1.5
1
1.5
2 | N
N
N
N | 7
5
5
7
7 | | 085-80
086-80
087-80
088-80
089-80 | 238
235
233
231
173 | 306
308
311
314
279 | L
L
L
L | L
L
14
L | L
L
L | L
20
20
40
20 | 70,000
50,000
70,000
G200,000
50,000 | N
N
N
N | L
10
. L
. L | 1,000
1,000
1,000
1,000 | 1.5
3
L
L | N
N
N
N | 15
5
10
15
5 | | 090-80
091-80
093-80
094-80
095-80 | 176
213
219
220
226 | 281
294
283
272
263 | L
L
L
L | L
20
17
20
30 | L
10
L
L | 20
L
20
L
L | 70,000
70,000
100,000
100,000
100,000 | и
и
и | l.
10
L
L | 1,000
300
300
300
150 | 1
2
2
2
N | N
N
N
N | 15
10
10
10 | | 096-80
097-80
103-80
104-80
106-80 | 231
240
307
306
319 | 264
261
319
319
326 | L
L
.02
L
L | 10
L
54
10
32 | L
10
L
L
10 | i
i
i
i | 100,000
30,000
30,000
30,000
50,000 | N
N
!
L | 10
10
20
20
15 | 300
300
200
200
300 | 2
2
3
2
3 | N
N
N
N | 15
7
5
5 | | 108-80
109-80
110-80
111-80
112-80 | 335
336
330
329
327 | 326
325
320
318
310 | .06
.04
L
L | 10
L
L
L | N
N
N
L | L
L
L | 20,000
20,000
50,000
50,000
30,000 | N
N
N
2
2 | 10
15
15
10 | 300
200
300
300
300 | 2
3
3
3
3 | N
N
N
N | 5
L
5
5 | | 113-80
114-80
115-80
117-80
121-80 | 330
301
274
292
367 | 310
296
170
262
319 | .06
L
L
L | L
L
L | N
L
N
L | L
L
L | 5,000
30,000
G200,000
100,000
30,000 | N
N
N | 10
10
L
L
20 | 150
300
700
300
500 | 2
1.5
1
1.5
2 | N
N
N
N | L
20
15
5 | | 122-80
124-80
128-80
129-80
130-80 | 368
318
310
310
305 | 315
196
191
187
167 | . 02
L
L
. 02
L | L
27
L
16 | L
L
10
L | L
L
L | 30,000
50,000
50,000
70,000
200.000 | N
N ·
N
N | 20
L
10
10
70 | 50
500
1,500
700
1,500 | 2
N
N
N | N
N
N
N | 5
L
30
7
7 | | 134-80
135-80
137-80
140-80
141-80 | 352
355
356
361
368 | 318
320
308
291
288 | .02
.02
.02
L
L | 11
L
12
L
L | L
L
N
N | L
L
L | 10,000
10,000
15,000
10,000
10,000 | N
N
N | 20
20
10
20
15 | 500
700
500
300
500 | 1
1
1.5
1.5 | N
N
N
N | L
5
5
L
N | | 142-80
144-80
145-80
146-80
147-80 | 361
346
344
322
327 | 281
262
251
249
245 | .02
L
l
.02
L | L
L
L
L | L
N
L
N | L
L
L | 10,000
50,000
30,000
10,000
70,000 | N
N
N
N | 10
10
L
L | 500
700
500
500
300 | 2
L
1 | N
N
N
N | L
20
10
10 | $from\ the\ Sierra\ Demonstration\ Project\ area -- Continued$ | Sample | | | | Semiqu | antita | tive s | pectrog | raphic | ana lyse | es (ppm): | Conti | nued | | | |--|-----------------------------|-------------------------------|---|---------------------------|----------------------------------|---------------------------|------------------------------|---------------------------|----------------------|-----------------------------------|---------------------------------|-----------------------------|--------------------|--------------------------------------| | | Cr
(5) | La
(20) | Mn
(10) | Mo
(5) | Nb
(10) | Ni
(5) | РЬ
(10) | Sc
(5) | Sn
(10) | Sr
(100) | V
(10) | Y
(10) | Zn
(200) | Zr
(10) | | | · | | | | | Str | eam sed | liments | Conti | nued | | | | P-11 | | 059-80
060-80
061-80
063-80
064-80 | 20
15
15
20
30 | 50
50
70
30
70 | 1,000
500
1,500
1,000
300 | 5
N
5
5 | 30
30
30
20
30 | 5
7
5
10
L | 30
20
50
30
N | 10
10
15
10 | L
N
N
N | 500
300
700
300
150 | 150
150
100
150
300 | 30
50
50
30
50 | N
N
N
N | 300
300
500
200
300 | | 065-80
067-80
070-80
071-80
074-80 | 10
5
300
30
10 | 50
50
50
70
20 | 1,000
700
500
1,000 | 7
100
N
20
10 | 20
20
15
20
10 | 5
L
15
10
7 | 50
30
N
30
50 | 10
7
15
15 | N
N
N
M | 200
200
200
300
300 | 100
70
700
200
100 | 30
30
50
50
15 | N
N
N
N | 200
500
1,000
200
70 | | 075-80
076-80
077-80
078-80
079-80 | 10
10
70
15
7 | 30
70
150
50
50 | 1,000
1,000
1,500
1,000
1,500 | 5
7
30
5
10 | 10
30
50
15
20 | 7
5
20
5
5 | 50
30
30
20
70 | 10
10
10
10 | N
N
H | 300
300
300
300
500 | 150
100
200
150
100 | 30
30
70
20
30 | N
N
N
N | 150
200
1,000
150
200 | | 080-80
081-80
082-80
083-80
084-80 | 10
10
15
15 | 30
50
70
50
30 | 1,000
1,000
2,000
1,500
700 | 7
20
15
15 | 20
30
30
20
20 | 10
L
5
7
7 | 50
20
30
50
50 | 7
7
7
10
10 | L
10
L
N | 300
150
150
200
200 | 150
150
150
150
100 | 30
50
50
30
20 | N
N
N
N | 200
300
1,000
200
150 | | 085-80
086-80
087-80
088-80
089-80 | 30
50
50
100
20 | 100
150
70
200
30 | 3,000
1,000
1,000
5,000
1,500 | 10
15
5
20
L | 30
30
20
50
20 | 15
20
15
15 | 70
50
50
50
30 | 20
7
15
15 | N
N
N | 500
500
300
300
500 | 200
100
200
300
150 | 50
30
30
100
30 | N
N
N
N | 500
300
200
1,000
300 | | 090-80
091-80
093-80
094-80
095-80 | 50
100
50
20
50 | 70
150
70
70
30 | 1,500
700
700
700
300 | 7
7
10
N
N | 30
10
15
15
L | 15
50
10
7
20 | 30
30
20
20
20 | 15
7
7
7
5 | N
N
N
N | 500
200
200
300
100 | 200
150
150
150
200 |
70
20
20
20
20 | N
N
N
N | 1,000
150
500
500
70 | | 096-80
097-80
103-80
104-80
106-80 | 70
15
7
7
15 | 50
30
30
30
100 | 1,000
700
1,000
1,000
700 | 7
L
7
5
L | 15
10
10
15 | 30
5
5
5 | 20
30
700
300
30 | 10
10
5
5 | N
N
N
N | 300
300
150
200
200 | 150
100
70
50
200 | 20
20
20
20
20 | N
500
N
N | 1,000
100
150
200
200 | | 108-80
109-80
110-80
111-80
112-80 | 15
10
15
10
7 | 70
30
30
100
70 | 1,000
700
700
700
700 | N
5
L
L | 15
10
10
15 | 5
15
5
5 | 50
50
20
30
30 | 10
5
10
7
5 | N
N
N
N | 200
L
200
300
500 | 70
20
50
70
50 | 20
20
20
30
10 | N
N
N | 200
100
150
200
70 | | 113-80
114-80
115-80
117-80
121-80 | L
50
70
50 | 30
N
300
70
50 | 500
1,000
2,000
2,000
500 | N
N
15
N
7 | L
100
100
15 | 5
N
20
30 | 30
50
L
50
50 | L
30
20
10 | N
N
N
N | 100
200
300
200
100 | 20
50
300
300
100 | 10
10
300
50
30 | N
N
N
L | 100
70
1,500
150
150 | | 122-80
124-80
128-80
129-80
130-80 | 10
L
30
30
30 | 50
50
100
50
50 | 500
500
2,000
1,000
1,500 | 7
L
5
L
L | 20
10
15
30
30 | 70
N
20
L
N | 30
10
70
20
20 | 7
5
20
15
20 | 11
11
11
11 | 100
200
1,000
300
500 | 50
70
150
200
300 | 30
15
70
50
70 | !!
N
N
N | 150
200
300
1,000
G1,000 | | 134-80
135-80
137-80
140-80
141-80 | 15
30
20
20
15 | 50
50
50
30
70 | 700
500
500
500
500 | 5
5
7
10 | 20
20
20
20
20 | 10
15
10
10 | 36
20
30
70
30 | L
5
5
5 | N
N
N
N | 200
150
200
150
200 | 20
50
20
20
15 | 20
20
15
15 | N
N
N | 100
150
200
200
100 | | 142-80
144-80
145-80
146-80
147-80 | 15
20
15
15
50 | 30
30
100
30
100 | 1,000
1,000
700
700
700 | 15
5
10
5
L | 20
20
20
20
20
30 | 10
10
7
7
15 | 30
20
30
20
15 | 5
15
10
10
15 | H
N
N | 200
300
300
200
300 | 20
100
70
30
100 | 15
30
20
30
50 | N
N
N
N | 100
309
200
300
200 | Table 3.—Spectrographic and chemical analyses of samples | Sample | Coord | inates | Chem | ical a | nalyses | (ppm) | Semio | uantitat | ive spec | trograph | ic analy | ses (ppm |) | |--|---------------------------------|---------------------------------|----------------------------|--------------------------|-------------------------|---------------------------|---|------------------|--------------------------|--|------------------------------|------------------|---------------------------| | | X | γ | Au
(.02) | Cu
(10) | As
(10) | W
(20) | Fe
(500) | Ag
(0.5) | (10) | Ba
(20) | Be
(1) | Bi
(10) | Co
(5) | | | | | | | <u>S t</u> | ream se | dimentsCo | ntinued | | | | | | | 148-80
150-80
155-80
156-80
157-80 | 317
313
370
357
368 | 122
128
255
251
258 | 0.02
L
.02
L
L | L
10
L
L
19 | N
L
N
N | L
L
L
L | 150,000
50,000
15,000
100,000
50,000 | N
N
N
N | L
10
15
L
10 | 500
500
700
700
500 | 1
1.5
L
1 | N
N
N
N | 20
20
5
50
7 | | 158-80
159-80
160-80
161-80
162-80 | 355
355
362
348
337 | 253
251
252
247
246 | L
L
L
L | L
L
11
L | N
N
L
10 | L
L
L
L | 70,000
30,000
30,000
30,000
30,000 | N
N
N
N | L
10
10
10 | 300
500
500
500
700 | 1
1
1
L
L | N
N
N
N | 10
7
7
20
20 | | 163-80
167-80
168-80
170-80
171-80 | 334
366
349
179
174 | 246
221
233
281
275 | L
L
L
10 | 11
L
13
12
L | L
L
N
N | 10
L
L
L | 30,000
30,000
100,000
200,000
50,000 | N
N
N
N | 10
L
L
L
10 | 500
1,000
1,000
700
700 | 1
1
1
1.5 | N
N
N
N | 15
7
7
10
10 | | 174-80
175-P
176-80
177-80
178-80 | 052
045
045
042
043 | 155
136
135
126
123 | L
L
L
L | 12
L | N
10
N
10
L | L
20
L
20
L | 70,000
G200,000
100,000
G200,000
30,000 | N
N
N
N | L
N
L
L | 700
20
1,000
700
1,000 | 1.5
1
1.5
1 | N
N
N
N | 7
20
7
10
5 | | 181-80
182-80
183-80
184-80
185-80 | 179
169
168
165
158 | 253
255
254
265
266 | L
L
L
L | L
L
L
13
L | N
L
N
N | L
20
L
20
L | 50,000
50,000
50,000
50,000
30,000 | N
N
N
N | 10
20
15
10 | 700
700
7 00
700
700 | 1.5
2
2
2
2
2 | N
N
N
N | 7
7
5
7
5 | | 188-80
189-80
190-80
191-80
192-80 | 150
145
142
132
130 | 285
288
287
287
282 | L
L
L
L | 12
L
L
12
L | N
10
N
10
L | L
20
20
30
20 | 70,000
150,000
70,000
6200,000
50,000 | N
N
N
N | 10
L
10
L
10 | 700
700
700
700
700 | 2
2
1
1.5 | N
N
N
N | 10
10
10
15
5 | | 193-80
194-80
195-80
196-80
197-80 | 106
105
113
318
319 | 273
276
286
140
137 | L
L
L
L | 18
L
14
L | 20
N
10
L
N | 500
L
500
L
L | G200,000
30,000
G200,000
50,000
30,000 | N
N
N
N | L
L
L
L | 500
500
200
1,000
700 | 2
2
3
2
1.5 | N
N
N
N | 15
5
20
7
5 | | 199-P
201-P
202-80
203-80
205-80 | 268
269
271
272
094 | 218
226
228
230
248 | լ
Լ
Լ
Լ | 24
18
L
24
L | 10
L
N
N | L
20
L
L | 6200,000
200,000
50,000
150,000
30,000 | N
N
N
N | N
N
L
L | 70
300
700
700
700 | 1
1
2
2
2 | N
N
N
N | 30
15
7
15
5 | | 207-80
209-80
210-P
211-80
212-80 | 125
118
117
115
118 | 228
225
225
226
216 | L
L
L
L | L
L
L
L | L
N
L
10
L | 60
L
40
L
L | 100,000
70,000
6200,000
50,000
50,000 | N
N
N
N | 10
10
N
L
10 | 700
7 00
50
7 00
500 | 2
2
L
2
2 | N
N
N
N | 7
7
20
10
7 | | 213-P
214-80
215-80
218-80
219-P | 109
108
314
322
245 | 214
215
279
254
216 | .63
L
L
L | 14
L
L
L | L
L
L
L | 240
L
L
L
80 | G200,000
50,000
100,000
50,000
100,000 | N
N
N
N | N
10
10
L
L | 100
500
500
500
300 | L
2
1.5
2 | N
N
N
N | 20
7
5
5
15 | | 220-P
221-80
222-P
223-80
224-80 | 249
295
106
103
94 | 215
284
222
221
218 | և
Լ
Լ
Լ | 23
L
18
L
L | L
N
N
N | 40
L
40
L
L | G200,000
50,000
G200,000
70,000
50,000 | N
N
N
N | N
15
N
L
L | 150
300
100
700
7 00 | N
2
N
2
2 | N
N
N
N | 30
7
20
10
7 | | 226-80
227-P
228-P
229-80
230-80 | 85
76
78
72
368 | 211
210
208
205
240 | L
1.40
L
L
L | 1
35
53
13
L | N
10
10
N | L
40
60
L
L | 70,000
G200,000
G200,000
150,000
70,000 | N
N
N
N | 10
N
N
L
10 | 700
70
20
700
500 | 2
N
N
2
2 | N
N
N
N | 7
20
30
15 | from the Sierra Demonstration Project area—Continued | Sample | | | | Semiqu | u anti ta | tive s | pectrog | raphic | analyse | s (ppm) | Conti | nued | | | |--|-------------------------------|-------------------------------|--|-------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|-------------------------|--|---------------------------------|------------------------------|------------------|---------------------------------------| | | Cr
(5) | La
(20) | Mn
(10) | Mo
(5) | NЬ
(10) | Ni
(5) | РЬ
(10) | S c
(5) | Sn
(10) | Sr
(100) | V
(10) | Y
(10) | Zn
(200) | Zr
(10) | | | ********** | | | | | Stre | am sedi | ments- | -Continu | ıed | | | | | | 148-80
150-80
155-80
156-80
157-80 | 30
20
20
700
20 | 100
30
70
30
100 | 1,000
1,000
300
700
500 | N
L
L
N
5 | 30
10
20
20
30 | 5
10
10
100
7 | 20
20
30
50
50 | 15
15
5
20
10 | N
N
N
N | 200
200
500
300
300 | 200
100
30
200
70 | 50
30
20
30
30 | N
N
N
N | 300
200
70
100
200 | | 158-80
159-80
160-80
161-80
162-80 | 20
50
30
200
70 | 100
100
100
50
70 | 500
700
500
700
1,000 | L
5
L
N |
20
30
30
20
20 | 7
15
10
70
20 | 50
50
20
30
20 | 10
10
10
15
20 | N
N
N
N | 300
300
300
300
300
500 | 100
70
50
70
70 | 30
50
30
30
50 | N
N
N
N | 300
150
150
100
100 | | 163-80
167-80
168-80
170-80
171-80 | 200
20
30
150
20 | 70
70
50
70
50 | 700
700
700
500
1,500 | 5
N
N
N
L | 20
10
10
10 | 30
20
50
10 | 50
15
15
10
20 | 15
5
10
10 | N
N
N | 300
300
300
300
300 | 70
50
200
500
100 | 50
10
20
30
20 | N
N
N
N | 100
150
300
1,000
200 | | 174-80
175-P
176-80
177-80
178-80 | 20
200
50
100
5 | 100
150
20
50
20 | 500
5,000
500
500
200 | N
N
N | 10
20
15
15 | 5
15
L
5
L | 15
N
20
10
50 | 10
5
50
10
5 | N
N
N
N | 300
N
300
300
300 | 100
700
200
300
70 | 30
70
30
30
10 | N
N
N | 700
G1,000
1,000
700
200 | | 181-80
182-80
183-80
184-80
185-80 | 15
20
15
70
5 | 20
30
50
70
30 | 300
500
500
500
300 | N
L
L
5 | 10
10
10
10 | 10
10
5
20
5 | 20
30
20
30
20 | 7
7
7
10
5 | N
N
N | 500
300
300
500
300 | 100
100
70
100
70 | 10
20
20
15
20 | N
N
N
N | 150
200
200
150
300 | | 188-80
189-80
190-80
191-80
192-80 | 15
50
20
70
15 | 50
100
50
100
20 | 500
700
700
700
500 | N
5
5
N
L | 10
50
10
20
10 | 5
15
7
5
5 | 15
15
20
10
15 | 10
15
15
15
7 | N
N
N
N | 500
300
500
200
300 | 150
300
150
300
70 | 20
50
20
70
15 | N
N
N
N | 300
200
200
300
300 | | 193-80
194-80
195-80
196-80
197-80 | 150
15
150
10
10 | 70
50
100
20
30 | 5,000
700
65,000
1,000
700 | 10
N
50
5
N | 20
15
20
10 | 10
5
50
L
L | L
20
N
10 | 10
5
15
10
7 | 20
N
50
N
N | 200
300
200
150
200 | 500
70
500
100
70 | 70
15
70
30
20 | N
N
N
N | 1,000
300
150
300
150 | | 199-P
201-P
202-80
203-80
205-80 | 200
150
15
70
10 | 200
150
70
30
70 | G5,000
2,000
700
1,000
700 | N
N
5
10
N | 100
30
15
10 | 10
30
10
20
5 | N
L
10
15
20 | 30
20
7
20
L | N
N
N
N | N
200
200
300
200 | 700
300
100
200
70 | 150
100
20
30
20 | N
N
L
N | 200
150
200
200
300 | | 207-80
209-80
210-P
211-80
212-80 | 20
15
300
70
5 | 30
30
70
30
50 | 700
500
500
500
700 | 5
N
N
N
L | 20
15
20
10
15 | 5
10
10
5 | 15
15
N
15 | 7
10
5
10 | N
N
N
K
L | 300
300
N
300
200 | 150
100
500
70
70 | 50
30
150
20
30 | N
N
N
N | 300
500
700
200
700 | | 213-P
214-80
215-80
218-80
219-P | 200
15
15
20
30 | 150
50
300
50
200 | 300
300
1,000
700
5,000 | N
L
N
5
15 | 50
15
50
15
100 | 10
5
L
5
7 | N
15
15
10 | 10
10
7
7
7 | N
N
N
N
20 | L
300
150
150
200 | 500
70
100
70
100 | 150
30
70
30
200 | N
N
N
N | 700
150
300
700
G1,000 | | 220-P
221-80
222-P
223-80
224-80 | 150
70
150
200
70 | 300
50
200
70
20 | 1,500
700
700
700
300 | N
N
N
N | 50
15
50
10 | 15
15
10
20
10 | N
15
N
15 | 7
15
7
15
10 | N
N
N
N | 200
L
300
300 | 300
70
300
100
100 | 200
30
200
20
15 | N
N
N
N | G1,000
300
G1,000
700
300 | | 226-80
227-P
228-P
229-80
230-80 | 150
150
150
150 | 30
70
70
20
50 | 500
500
700
700
500 | N
H
N
N | 10
15
15
10
10 | 5
15
15
15
20 | 15
N
N
15 | 10
7
5
15
10 | N
N
N
N | 300
L
N
300
300 | 100
300
500
300
100 | 20
30
30
20
20 | N
N
N | 200
500
700
500
150 | ${\bf TABLE~3.} \color{red} - Spectrographic~and~chemical~analyses~of~samples$ | Sample | | | Chen | | nalyses | (ppm) | Semio | quant i t a t | | ctrograph | | | | |---|---------------------------------|---------------------------------|-----------------------------------|---------------------------|---------------------------|---------------------------|--|----------------------|----------------------------|-------------------------------------|-------------------------|------------------|----------------------------| | | X | γ | Au
(.02) | Cu
(10) | As
(10) | (20) | Fe
(500) | Ag
(0.5) | (10) | Ba
(20) | Be
(1) | Bi
(10) | Co
(5) | | | | | | | <u>St</u> | ream se | dimentsCo | ont inued | | • | | | | | 232-80
233-80
234-P
235-P
1001-20 | 335
116
122
241
275 | 265
196
197
210
169 | L
L
33.6
.06
L | L
L
12
L | N
L
L
L | N
N
160
80
10 | 30,000
150,000
6200,000
150,000
100,000 | N
1
N
N | 10
L
N
L | 700
700
30
300
200 | 2
1.5
N
N
L | N
N
N
N | 5
7
20
15
5 | | 1001-20
1001-80
1001-80
1002-20
1002-80 | 275
275
275
263
263 | 169
169
169
167
167 | L
L
L
L | L

L
L | 10
L
60
40
20 | L
L
L | 70,000
150,000
200,000
30,000
70,000 | N
N
N
N | 10
L
L | 500
200
500
700
500 | ւ
ւ
ւ | N
N
N
N | 5
10
10
5
5 | | 1003-20
1003-80
1004-20
1004-80
1005-20 | 259
259
258
258
251 | 171
171
171
171
161 | .02
L
L
L | L
L
L | N
N
N
N | L
L
L | 10,000
30,000
10,000
50,000
20,000 | N
N
N
N | L
10
10 | 500
300
700
500
500 | L
L
L
L | N
N
N
N | 5
5
5
10
5 | | 1005-80
1006-20
1006-80
1007-20
1007-80 | 251
286
286
286
286 | 161
200
200
200
200 | L
.02
L
L
L | L
L
10
L | N
L
L
N | L
L
L | 20,000
10,000
30,000
10,000
20,000 | N
N
N
N | 10
L
10
L
L | 500
500
500
500
500 | i
L
L
L | N
N
N
N | 5
L
L
L | | 1008-20
1008-80
1009-20
1009-80
1010-20 | 286
286
296
296
106 | 200
200
206
206
203 | L
L
L
L | L
L
L | 08
N
N
N | L
L
L | G200,000
G200,000
20,000
200,000
20,000 | N
N
N | 50
20
I.
10
I. | 50
50
1,000
500
300 | L
L
L
L | N
N
N
N | 20
10
L
10
L | | 1010-80
1011-P
1012-P
1013-P
1014-20 | 106
105
102
103
110 | 203
199
191
190
185 | L
L
.15
L
L | L
L
L
34 | N
N
N
N | L
10
40
L
L | 20,000
G200,000
200,000
200,000
20,000 | N
N
N
N | L
50
20
30
L | 200
L
L
50
300 | L
L
L
L | N
N
N
N | L
20
20
10
L | | 1014-80
1016-80
1017-80
1018-80
1019-80 | 110
189
180
181
170 | 185
301
298
296
297 | L
L
L
L | L
L
10
L
L | N
N
N
10 | L
L
L | 20,000
70,000
20,000
30,000
20,000 | N
N
N
N | L
10
10
10 | 20
200
200
300
200 | L
L
L
L | N
N
N
N | L
10
5
5 | | 1020-80
1021-80
1022-80
1023-80
1024-80 | 169
170
170
166
280 | 297
294
283
284
199 | L
L
L
L | L
L
L | N
N
N
N | L
L
L
20 | 50,000
70,000
100,000
50,000
50,000 | N
N
N
N | 10
10
10
10 | 500
500
150
150
1,000 | L
L
L
1.5 | N
N
N
N | 5
5
10
5
5 | | 1025-80
1026-80
1027-80
1028-80
1029-80 | 276
274
260
259
243 | 192
193
188
202
211 | L
L
.16
.08 | և
Լ
Լ
Լ | և
Լ
Լ | l.
L
20
20
20 | 50,000
100,090
70,000
100,000
50,600 | N
N
N
N | l
L
10
L | 1,000
700
1,000
1,000 | 1
1
1
2 | N
N
N
N | 7
10
10
15 | | 1030-80
1031-80
1032-80
1034-80
1035-80 | 245
231
230
233
247 | 211
205
206
195
191 | . 20
. 06
. 10
. 04
L | և
Լ
Լ
Լ | L
N
L
L | 20
L
L
L | 70,000
50,600
30,000
70,000
30,000 | N
N
N
N | L
10
10
10 | 700
700
500
700
300 | 1
2
2
1
1 | N
N
N
N | 15
10
5
5 | | 1036-80
1037-80
1038-80
1039-80
1040-80 | 247
244
257
259
280 | 187
105
101
101
101 | L
L
L
L | L
L
L | և
Լ
Լ
Լ | L
20
20
20
20 | 50,000
100,000
50,000
6200,000
150,600 | N
N
N
N | 10
L
10
L
15 | 500
500
1,000
500
1,000 | 2
N
2
N
2 | И
И
И | 5
30
10
30
20 | | 1041-80
1044-80
1045-P
1047-80
1048-80 | 287
231
231
226
223 | 124
241
241
250
249 | l
L
L
! |
L
17
29
20
26 | և
Լ
Լ
Լ | L
L
L
L | 70,000
6200,000
6200,000
200,000
200,000 | N
N
N
N | 10
L
L
L | 1,500
500
50
1,000
700 | 2
N
N
!
L | N
N
N
N | 15
30
50
20
15 | $from\ the\ Sierra\ Demonstration\ Project\ area -- Continued$ | Sample | | | | Semiqu | uantita | tive sr | ectrog | aphic | analys | es (ppm) | Conti | inued | | | |---|-----------------------------|------------------------------|---|-------------------------|----------------------------|----------------------------|-----------------------------|----------------------------|-------------------------|---------------------------------|--------------------------------------|-------------------------------|-------------------------|---| | | Cr
(5) | La
(20) | Mn
(10) | Mo
(5) | NЬ
(10) | Ni
(5) | РЬ
(10) | \$c
(5) | Sn
(10) | Sr
(100) | V
(10) | Y
(10) | Zn
(200) | Zr
(10) | | | | | | | | Stre | am sed | ments | Conti | nued | | | | | | 232-80
233-80
234-P
235-P
1001-20 | 5
20
150
100
20 | 20
N
70
500
150 | 700
200
700
3,000
300 | N
N
N
20
5 | 10
10
70
70
20 | 20
7
10
10
5 | 15
15
N
10 | 5
7
5
20
5 | N
N
15
L | 150
150
N
150
50 | 50
150
500
200
50 | 10
10
150
G200
20 | N
N
N
N | 700
700
61,000
700
50 | | 1001-20
1001-80
1001-80
1002-20
1002-80 | 30
30
5 | 50
L
100
50
200 | 300
500
1,000
200
500 | 10
5
L | 20
20
20
20
20 | 5
7
5
5
5 | 10
20
20
30
30 | 5
10
20
10
20 | ն
Լ
Լ
Լ | 100
100
100
200
200 | 50
200
300
30
50 | 15
20
30
10
20 | L
L
200
L
L | 50
100
500
50
100 | | 1003-20
1003-80
1004-20
1004-80
1005-20 | 5
L
10 | L
50
50
50 | 200
200
300
1,500
200 | i.
L
L
L | 10
10
10
20
15 | 5
5
5
5 | 10
20
30
20
20 | 5
15
5
20
L | լ
Լ
Լ
Լ | 150
150
300
200
200 | 20
30
20
30
20 | 10
20
10
20 | L
L
L | 20
50
20
100
30 | | 1005-80
1006-20
1006-80
1007-20
1007-80 | 10 | 50
50
L
L | 500
100
200
100
100 | L
L
L | 10
10
10
10 | 5
5
5
5 | 20
20
100
20
20 | 10
L
5
L
L | և
և
և
և | 200
150
150
200
150 | 20
20
30
20
20 | 15
L
10
L
10 | L
L
200
L
L | 50
L
20
20
50 | | 1008-20
1008-80
1009-20
1009-80
1010-20 | 30
20
100 | 100
L
50
L
50 | 1,500
500
700
1,000
150 | 7
7
L
5
L | 30
30
10
30
10 | 5
10
5
5 | L
30
20
20 | 20
5
5
20
5 | L
L
L | L
300
100
200 | 200
200
20
200
200
20 | 50
10
10
20
10 | L
L
L | 200
500
50
300
70 | | 1010-80
1011-P
1012-P
1013-P
1014-20 | 200
150
150 | 50
L
L
L | 200
500
300
300
200 | L
10
7
10
L | 10
20
20
20
L | 5
10
5
5 | 15
L
L
L
20 | 10
10
15
10
5 | L
L
L
L | 200
L
L
100
100 | 20
200
200
200
200
20 | 15
50
20
50
L | L
L
L | 100
700
1,000
500
L | | 1014-80
1016-80
1017-80
1018-80
1019-80 | 200
100
100 | L
50
L
70
50 | 200
500
300
500
200 | L
L
L | 10
10
L
10 | 5
30
30
30
30 | 20
20
20
20
20 | 5
5
10
5 | L
L
L | 100
100
100
100 | 20
100
20
20
20 | .10
10
L
15
10 | L
L
L
L | 100
20
70
30 | | 1020-80
1021-80
1022-80
1023-80 | 100
150
30 | 70
70
100
50
100 | 500
500
700
500
1,000 | L
L
L
N | 10
10
10
10
20 | 20
30
30
20
10 | 20
20
20
20
20 | 15
15
20
7
10 | L
L
L
N | 200
200
150
150
500 | 50
50
70
50
100 | 15
20
20
10
30 | L
L
N | 50
50
100
50
100 | | 1025-80
1026-80
1027-80
1028-80
1029-80 | 50
50
70 | 50
30
70
50
20 | 1,500
700
500
1,500
1,000 | N
N
L
5
L | 30
20
30
30
30 | 5
15
20
15 | 20
15
10
30
20 | 15
7
10
15
20 | N
N
N
N | 500
300
300
500
300 | 200
200
200
200
200 | 50
20
50
50
50 | N
N
N
N | 300
200
150
500
150 | | 1030-80
1031-80
1032-80
1034-80
1035-80 | 30
15
20 | 100
50
20
50
20 | 2,000
1,500
1,000
700
700 | 5
N
L
L | 50
15
10
15 | 20
10
10
10
7 | 20
30
30
30
30 | 20
30
15
15 | L
N
N
N | 300
500
300
700
200 | 200
100
100
100
100 | 100
50
20
20 | N
N
N
N | 1,000
700
100
150
30 | | 1036-80
1037-80
1038-80
1039-80 | 50
15
700 | 70
50
100
30
70 | 700
1,500
1,500
1,500
5,000 | N
5
L
N
20 | 15
30
30
30
20 | 5
30
L
20
10 | 30
10
30
N
50 | 10
50
20
30
30 | N
10
11
N
L | 300
200
500
150
500 | 100
300
200
1,500
300 | 30
150
70
100 | N
N
N
N | 300
1,000
1,000
G1,000
G1,000 | | 1041-80
1044-80
1045-P
1047-80
1048-80 | 500
500
500 | 30
30
50
150 | 1,500
1,000
1,000
1,500
1,000 | N
5
N
5 | 20
20
20
30
30 | 7
20
30
50
50 | 50
N
N
20
20 | 30
10
7
15 | N
N
H
H | 700
200
N
700
500 | 200
700
1,000
500
300 | 70
50
70
20
70 | N
N
N
N | 300
61,000
1,000
61,000
500 | Table 3.—Spectrographic and chemical analyses of samples | Sample | Coord | inates | Chem | ical a | nalyses | (ppm) | Semiqu | uantilat | ive spec | trograph | ic analys | ses (ppm) | | |---|--|---------------------------------|--------------------------------|-------------------------|-----------------------|------------------------------|---|---------------------|----------------------------|---|-----------------------------|------------------|----------------------------| | | X | Y | Au
(.02) | Cu
(10) | As
(10) | W
(20) | Fe
(500) | Ag
(0.5) | B
(10) | Ba
(20) | Ве
(1) | Bi
(10) | Co
(5) | | | ······································ | | | | St | ream sec | limentsCo | ntinued | | | | | | | 1049-80
1050-80
1051-80
1053-80
1054-80 | 218
224
367 | 242
241
236
148
156 | .04
L
L
L
L | 12
28
L
L | լ
Լ
Լ
Լ | ն
Ա
Ա
Լ | 100,000
G200,000
100,000
20,000
50,000 | N
N
N
N | L
L
L | 700
1,000
1,000
1,000 | 1
1
1.5
1.5 | N
N
N
N | 15
30
15
5 | | 1055-80
1056-80
1057-80
1058-80
1059-80 | 364
362
351 | 170
179
182
189
225 | L
L
.20
.04 | L
L
L
L | և
Լ
Լ | L
L
L | 50,000
70,000
50,000
70,000
50,000 | N
N
N
N | 10
20
L
10
L | 1,000
1,500
1,000
1,000
500 | 2
3
2
2
2 | N
N
N
N | 10
10
10
10
5 | | 1060-80
1061-80
1062-80
1063-80
1064-80 | 148
165
170 | 233
246
240
239
231 | .06
.02
L
L
L | L
L
L
L | լ
Լ
Լ
Լ | L
L
L | 20,000
15,000
30,000
30,000
30,000 | N
N
N
N | 1.
L
L
L | 500
500
700
700
700 | 1.5
2
2
3
3 | N
N
N
N | 5
5
7
7
7 | | 1066-80
1067-80
1068-80
1069-80
1070-80 | 206
209
344 | 222
227
228
160
154 | L
L
. 04
L | L
12
L
L | լ
Լ
Լ
Լ | L
L
L | 50,000
G200,000
50,000
200,000
50,000 | N
N
N
N | L
10
L
L | 700
300
500
700
1,000 | 1.5
N
1.5
1.5 | N
N
N
N | 15
20
10
7
5 | | 1071-80
1072-80
1073-80
1074-80
1075-80 | 334
350
335 | 151
156
151
147
151 | .04
L
L
L | L
L
L
L | և
Լ
Լ
Լ | L
20
20
L
L | 100,000
50,000
20,000
200,000
70,000 | N
N
N
N | 10
L
L
L | 300
1,000
700
300
700 | 2
2
2
2
1.5 | N
N
N
N | 5
5
10
7 | | 1076-80
1077-80
1078-80
1079-80
1080-80 | 308
180
168 | 153
162
161
167
199 | L
L
.02
.04 | L
L
L
L | լ
լ
լ | ί
ί
ί | 70,000
100,000
200,000
50,000
70,000 | N
N
N
N | լ
Լ
Լ
Լ | 1,000
700
700
700
700 | 1.5
1.5
1
2
1.5 | N
N
N
N | 7
7
10
10 | | 1080-P
1081-80
1081-P
1082-80
1082-P | 120
119
119
130
130 | 199
202
202
203
203 | 19.0
.50
.12
.06
L | 12
L
L
L
20 | և
Լ
Լ
Լ | 300
20
40
20
300 | G200,000
70,000
G200,000
200,000
G200,000 | 1.5
.5
N
N | N
10
L
10
L | 70
1,000
100
700
50 | N
3
N
2
N | N
N
N
N | 30
5
50
10
30 | | 1084-80
1084-P
1085-80
1086-80
1088-80 |
141
141
197
185
204 | 194
194
262
263
232 | 1.3
11.0
.06
.02
L | L
15
L
L | L
L
L
L | 40
600
L
L
L | 6200,000
200,000
50,000
150,000
200,000 | N
N
N
N | լ
Լ
Լ
Լ | 500
100
700
1,000
700 | L
N
1.5
1 | N
N
N
N | 10
30
10
20
20 | | 1089-80
1090-80
1091-80
1092-80
1093-80 | 204
204
203
256
260 | 237
238
264
237
239 | L
L
.06 | և
Լ
Լ | L
L
L
N | l
L
L
L | 150,000
70,000
70,000
50,000 | N
N
N
N | L
L
10
10 | 500
1,500
1,000
300
500 | L
2
1
3
1.5 | N
N
N
N | 20
15
10
5
15 | | 1094-80
1095-80
1096-80
1097-80
1098-80 | 257
252
260
267
371 | 241
250
257
254
93 | և
և
և
և | 13
L
L
L | L
L
N
10 | լ
Լ
Լ
Լ | 200,000
150,000
70,000
30,000
200,000 | N
N
N
N | 10
L
10
10
20 | 300
300
300
300
700 | 1.5
2
1.5
2
L | N
N
N
N | 20
15
10
5 | | 1099-80
1101-80
1103-80
1104-80
1105-80 | 382
389
372
370
212 | 104
111
123
112
167 | .02
L
L
L | L
L
L
L | և
Լ
Լ | լ
Լ
Լ
Լ | 100,000
50,000
50,000
30,000
50,000 | N
N
N
N | 50
L
L
10
10 | 1,500
700
1,000
500
300 | 2
1
1
2
2 | N
N
N
N | 15
10
7
5
5 | | 1107-80
1108-80
1109-80
1110-30
1112-80 | 222
287
305
306
282 | 180
292
326
319
309 | L
. 04
L
L
L | և
Լ
Լ
Լ | L
L
L
N
L | լ
Լ
Լ
Մ | 30,000
20,000
15,000
15,000
20,000 | N
N
N
N | 10
15
10
10
20 | 500
300
300
500
500 | 2
1.5
2
1.5
3 | N
N
N
N | 5
5
5
1 | $from\ the\ Sierra\ Demonstration\ Project\ area — {\bf Continued}$ | Sample | | | | Semiq | uantita | tive s | pectrog | raphic | analys | es (ppm) | Conti | | | | |---|------------------------------------|-----------------------------|---|-------------------------|----------------------------|---------------------------|----------------------------|----------------------------|-----------------------|---|-----------------------------------|------------------------------|------------------|--| | | Cr
(5) | La
(20) | Mn
(10) | Mo
(5) | Nb
(10) | N1
(5) | РЬ
(10) | Sc
(5) | Sn
(10) | Sr
(100) | V
(10) | Y
(10) | Zn
(200) | Zr
(10) | | *************************************** | | | | | | Str | eam sed | iments | Conti | nued | | | | | | 1049-80
1050-80
1051-80
1053-80
1054-80 | 700
50
10 | 70
100
30
30 | 1,000
1,000
1,500
700
700 | 5
5
5
10 | 30
30
20
15
20 | 50
50
20
5 | 20
10
30
50
30 | 15
15
15
7
15 | N
N
N
N | 500
500
500
150
200 | 300
500
200
70
150 | 70
70
50
30
30 | N
N
N
N | 300
61,000
300
200
200 | | 1055-80
1056-80
1057-80
1058-80
1059-80 | 15
10
15
15 | 30
50
30
70
30 | 1,500
1,500
1,500
1,500
700 | 5
5
5
10 | 30
30
20
30
20 | 5
5
5
5
L | 30
50
50
30
20 | 20
20
15
20
7 | N
N
N
N
L | 500
50 0
300
300
300 | 150
150
150
200
150 | 50
70
30
70
50 | N
N
N
N | 500
300
70
500
200 | | 1060-80
1061-80
1062-80
1063-80
1064-80 | 10
5
15
10
15 | 30
20
100
50
50 | 500
300
1,000
2,000
2,000 | N
N
7
5
5 | 20
15
50
70
20 | L
5
5
L
5 | 50
50
70
50
70 | 7
5
15
15 | L
N
10
10 | 500
500
500
700
700 | 100
50
150
100
100 | 30
15
50
70
100 | N
N
N
N | 700
70
200
1,000
500 | | 1066-80
1067-80
1068-80
1069-80
1070-80 | 100
200
30
20
10 | 70
50
50
150
70 | 1,500
1,500
1,000
5,000
5,000 | L
5
N
L
L | 30
30
10
50
30 | 20
20
20
L
5 | 30
10
50
20
50 | 20
15
10
15
10 | L
N
N
N
L | 500
300
500
200
300 | 150
700
150
200
100 | 70
70
15
70
70 | N
N
N
N | 1,000
61,000
200
1,000
300 | | 1071-80
1072-80
1073-80
1074-80
1075-80 | 15
7
5
15 | 70
50
20
30
70 | 700
2,000
1,000
1,500
1,000 | N
L
5
L | 15
20
20
30
20 | 5
5
5
L | 30
20
30
20
20 | 10
10
5
15 | N
10
N
N | 100
300
300
150
200 | 150
100
50
300
150 | 30
50
30
70
30 | N
N
N
N | 300
150
100
500
300 | | 1076-80
1077-80
1078-80
1079-80
1080-80 | 10
10
70
30
30 | 20
70
70
L
50 | 1,000
3,000
1,000
1,000
700 | N
N
10
N
N | 20
50
50
15
20 | 5
L
10
10
5 | 20
20
20
30
30 | 10
10
15
20
10 | N
L
10
10 | 300
200
500
300
300 | 150
200
300
150
150 | 30
70
100
30
30 | N
N
N
N | 1,000
300
200
300
300 | | 1080-P
1081-80
1081-P
1082-80
1082-P | 500
20
1,000
100
1,000 | 50
N
N
30
N | 1,000
1,000
1,000
1,000 | N
N
N | 30
30
20
30
15 | 20
L
10
L
20 | N
30
N
50
N | 15
7
N
10
N | N
N
N
N | N
500
N
700
N | 500
150
700
200
700 | 100
30
50
70
50 | N
N
N
N | 300
500
61,000
500
700 | | 1084-80
1084-P
1085-80
1086-80
1088-80 | 150
1,000
50
100
150 | 20
30
50
50
100 | 1,000
1,000
1,500
1,500
1,500 | 10
15
L
5
7 | 30
50
30
30
30 | 7
20
15
20
20 | 20
N
30
30
20 | 10
7
20
20
30 | N
N
N
N | 300
N
500
500
500 | 300
1,000
200
300
300 | 70
200
70
50
100 | N
N
N
N | 500
1,000
300
700
61,000 | | 1089-80
1090-80
1091-80
1092-80
1093-80 | 100 | 70
70
30
N
50 | 1,000
1,500
1,000
700
1,000 | 5
L
5
N
N | 30
20
20
10 | 50
50
20
5
30 | 15
50
30
30
50 | 20
20
15
10 | N
N
N
N | 500
1,000
700
300
300 | 300
200
200
100
150 | 70
50
30
10
20 | N
N
N
N | 500
200
200
300
150 | | 1094-80
1095-80
1096-80
1097-80
1098-80 | 200
150
20
10
100 | 50
20
50
30
70 | 700
700
700
700
700
1,500 | N
N
N
L | 10
10
10
L
30 | 15
20
10
7
10 | 20
30
30
30
20 | 10
10
10
10 | N
N
N
N | 200
300
300
300
300 | 300
300
150
100
500 | 30
15
15
10
50 | N
N
N
N | 300
70
150
50
1,000 | | 1099-80
1101-80
1103-80
1104-80
1105-80 | 70
10
5
10
20 | 100
50
30
30
20 | 2,000
1,000
1,000
700
700 | L
7
7
5
N | 30
30
20
10 | 15
7
5
5 | 30
30
20
30
50 | 20
15
15
10
10 | N
N
N
L | 1,000
300
200
200
300 | 200
150
150
100
150 | 100
50
30
30
20 | N
N
N
N | 150
500
200
500
200 | | 1107-80
1103-80
1109-80
1110-80
1112-80 | 10
15
5
5 | 70
20
20
100
20 | 500
500
700
700
1,500 | N
5
L
L | 10
10
10
10 | 5
15
5
5 | 30
70
70
30
50 | 7
5
5
5
L | N
N
10
N | 300
100
200
200
150 | 30
30
30
30
200 | 20
20
30
20
10 | N
N
N | 70
70
30
70
70 | Table 3.—Spectrographic and chemical analyses of samples | Sample (| oordin | ates | Chemie | cal ana | lyses (| ppm) | Semiqu | antitativ | e spectr | ographi | analy | ses (ppi | n) . | |--------------------|------------|------------|-------------|------------|------------|-----------|--------------------------|-------------|----------|--------------|---------------|------------|-----------| | | X | Y | Au
(.02) | Cu
(10) | As
(10) | W
(20) | Fe
(500) | Aq
(0.5) | (10) | Ba
(20) | 8e
(1) | Bi
(10) | Co
(5) | | | | | | | <u>Str</u> | eam sed | imentsCon | tinued | | | | | | | 1113-80 | 278 | 310 | L | L | N | L | 50,000 | N | 20 | 700 | 3 | N | 5 | | 1114-80
1115-80 | 266
277 | 321
318 | L
L | L
L | N
N | · L | 76,000
70, 000 | N
N | 20
20 | 700
300 | 3
3 | N | 5
5 | | 1116-80 | 286 | 321 | L | Ĺ | N | Ĺ | 50,000 | N N | 10 | 300 | 3 | N
N | 7 | | 1118-80 | 298 | 318 | Ĺ | 13 | Ë | Ĺ | 100,000 | N | 10 | 300 | 3 | N | 5 | | 1119-80 | 297 | 325 | Ļ | L | N | L | 70,000 | N | 50 | 500 | 3 | N | 5 | | 1120-80
1121-80 | 313
299 | 281
282 | L
L | L
16 | N
L | L
L | 50,000 | N | 20
20 | 300
300 | 3
2 | N | 5
10 | | 1121-80 | 295 | 141 | Ĺ | Ĺ | N | L | 50,000
50,000 | N
N | 10 | 300 | 2 | N
N | 10 | | 1123-80 | 299 | 151 | Ĺ | ĩ | ï | - [| 70,000 | N | 10 | 500 | 3 | N | 10 | | 1124-80 | 303 | 150 | l. | 10 | 60 | L | 30,000 | N | 10 | 500 | 2 | N | 7 | | 1125-80
1127-80 | 291
289 | 164
166 | L | L
11 | L | L | 50,000 | N | 20 | 500 | 3
2 | N | 10
10 | | 1128-80 | 278 | 283 | Ĺ | Ľ | N
N | L | 50,000
15,000 |
N
N | 20
20 | 500
100 | 2 | N
N | 7 | | 1130-80 | 325 | 285 | ī | 12 | N | N | 100,000 | N | 10 | 700 | 2 | N | 7 | | 1131-80 | 325 | 281 | L | L | N | N | 50,000 | N | L | 300 | 2 | N | 10 | | 1133-80 | 323 | 269 | L | L | N | N | 30,000 | N | L. | 300 | 2 | N | 7 | | 1134-80
1137-80 | 327
315 | 267
256 | L
L | L
L | N
N | N
N | 30,000 | N
N | 20
10 | 700
300 | 2
1.5 | N
N | 7
7 | | 1138-80 | 283 | 233 | Ĺ | Ĺ | N | N | 30,000
150,000 | N | L | 300 | 1.5 | N | 15 | | 1139-80 | 288 | 250 | L | L | N | N | 100,000 | N | L. | 300 | 1.5 | N | 15 | | 1140-80 | 304 | 255 | L | L | N | N | 50,000 | N | 10 | 300 | 1.5 | N | 10 | | 1141-80
1142-80 | 294
295 | 247
244 | L
L | L
L | N
N | N
N | 50,000
50,000 | N
N | 10
10 | 300
300 | 2
2 | N
N | 10
7 | | 1143-80 | 286 | 243 | Ĺ | Ĺ | N | N | 50,000 | N | Ĺ | 300 | 2 | N | 7 | | 1144-80 | 284 | 244 | L | L | N | L | 70,000 | N | L | 300 | 1.5 | N | 10 | | 1145-80 | 283 | 250 | Ĺ | L | N | N | 30,000 | N | 10 | 200 | 2 | N | .5 | | 1146-80
1147-80 | 255
249 | 176
176 | L
.02 | L
L | N
N | L | 70,600
70,600 | N
N | 15
15 | 500
500 | 2
2 | N
N | 10
10 | | 1150-20 | 104 | 321 | L | ī | 10 | ĭ | 20,000 | N | ió | 700 | 5 | N | 7 | | 1150-80 | 104 | 321 | L | Ł | L | 80 | 100,000 | N | 20 | 300 | 7 | N | 15 | | 1151-80 | 131 | 323 | .02 | 10 | 10 | Ļ | 100,000 | N
N | 20
20 | 500 | 2
2 | N
N | 15
10 | | 152-80
153-80 | 129
229 | 311
188 | L
.02 | L | N
L | L
L | 70,000
50,000 | N | /0
L | 500
1,000 | N | N | 7 | | 1154-80 | 225 | 204 | .02 | Ĺ | 20 | ī | 50,000 | N | Ĺ | 1,000 | N | N | 5 | | 1155-80 | 208 | 207 | L | 10 | L | L | 70,600 | Ň | 50 | 1,500 | N | N | 10 | | 1156-80 | 201 | 203 | .02 | 10
L | 100
10 | L | 70,000 | N | 50 | 1,500 | N
N | N
N | 10 | | 157-80
 158-80 | 195
187 | 214
238 | .02
.04 | L
L | L | L
L | 150,000
50,000 | N
N | 70
10 | 1,000 | N | N
N | 7
5 | | 159-80 | 190 | 241 | Ŀ | Ĺ | 20 | 10 | 50,000 | N | 10 | 500 | N | N | 5 | | 1160-80 | 185 | 248 | L | L | 20 | L | 100,000 | N | 10 | 300 | N | N | 7 | | 1161-80
1162-80 | 198
191 | 136
140 | .02 | L
L | N
N | L | 150,000 | N | l.
10 | 500
500 | 1
1.5 | N
N | 20
10 | | 1163-80 | 184 | 141 | .02 | Ĺ | N | L | 15,000
20,000 | N
N | 15 | 1,000 | 1.5 | N | 15 | | 1164-80 | 183 | 140 | L | Ĺ | N | Ğ | 20,000 | N | 10 | 1,000 | i | N | 15 | | 1165-80 | 188 | 137 | .02 | L | N | L | 30,000 | N | | 1,000 | 1 | N | 15 | | 1166-80
1167-80 | 357
348 | 291
282 | L | L
L | N
N | L
L | 10,000
20,000 | N | ìO
L | 700
700 | 2
1.5 | N
N | L
L | | 1168-80 | 337 | 283 | . 02 | ì | N | Ĺ | 100,000 | N
N | Ĺ | 700 | 1.5 | N | 20 | | 1169-80 | 337 | 275 | L | L | N | Ĺ | 50,000 | N | L | 700 | 1 | N | 20 | | 1170-80 | 348 | 271 | L | Ļ | Ν. | L | 50,000 | N | L | 700 | 1 | N | 20 | | 1171-80
1172-80 | 351
352 | 274
274 | L
.02 | L
L | N
L | L | 20,000
50,000 | N | 16
L | 700
700 | 1 | M
N | 5
7 | | 1173-80 | 365 | 282 | .02
L | Ë | N | Ĺ | 10,000 | N
N | 10 | 500 | 1.5 | N | ί | | 1174-80 | 349 | 267 | .02 | Ĺ | N | i | 15,000 | N | 10 | 500 | 1 | N | 7 | | 1176-80 | 345 | 250 | L | 10 | N | Ļ | 100,000 | N | L | 500 | Ļ | L | 20 | | 1177-80
1178-80 | 335
326 | 246
245 | .02
.02 | L
L | N
N | L | 20,000
70,000 | N
N | L | 700
700 | l
L | N
N | 15
20 | | 1179-80 | 358 | 119 | L | L | Ň | Ĺ | 50,006 | N | Ĺ | 700 | i | N | 15 | | 1180-80 | 354 | 113 | L | L | N | L | 100,000 | N | L | 500 | 1 | N | 15 | | | | | | | | | | | | | | | | $from\ the\ Sierra\ Demonstration\ Project\ area -- Continued$ | Sample | | | | Semi | quantita | | spectro | graphic | analys | es (ppm | | | | | |---|-----------------------------|-----------------------------------|---|-------------------------|----------------------------------|--------------------------|----------------------------|----------------------------|-------------------------|---------------------------------------|---------------------------------|----------------------------------|--------------------|---| | | Cr
(5) | Ļa
(20) | Mn
(10) | Mo
(5) | Nb
(10) | Ni
(5) | Pb
(10) | Sc
(5) | Sn
(10) | Sr
(100) | V
(10) | Y
(10) | Zn
(200) | Zr
(10) | | | | | | | | <u>St</u> | ream sec | liment | Conti | nued | | | | | | 1113-80
1114-80
1115-80
1116-80
1118-80 | 7
10
10
7
10 | 70
70
50
150
200 | 1,500
1,500
2,000
1,500
3,000 | 10
10
7
7
L | 20
20
20
20
20
50 | 5
7
5
5
5 | 50
50
50
30
30 | 15
10
20
20
L | L
N
L
L
10 | 200
200
200
200
100 | 100
100
100
150
100 | 50
30
50
50 | N
N
N
N | 500
300
300
300
700 | | 1119-80
1120-80
1121-80
1122-80
1123-80 | 7
10
10
20
20 | 50
200
20
20
20
20 | 1,500
1,500
1,000
1,500
1,500 | 5
10
L
5 | 20
20
10
10 | 5
7
5
5 | 50
30
70
30
30 | 10
10
10
20
30 | 10
10
L
L | 100
100
300
200
300 | 70
100
70
150 | 20
100
10
20
50 | N
N
N
N | 1,000
300
50
300
500 | | 1124-80
1125-80
1127-80
1128-80
1130-80 | 15
10
20
L
15 | 30
50
50
30
200 | 1,500
1,000
1,500
1,000
1,500 | 7
7
7
L
10 | 15
15
15
10
20 | 7
5
10
5
L | 30
30
30
50
50 | 15
15
15
5 | L
L
L | 100
300
500
200
500 | 100
100
150
30
200 | 30
20
20
15
50 | N
N
N
N | 150
300
200
100
500 | | 1131-80
1133-80
1134-80
1137-80
1138-80 | 5
5
10
70 | 30
20
50
30
50 | 1,500
1,000
1,500
1,000
3,000 | N
N
N
5 | 15
10
15
15
30 | 5
5
5
L | 30
30
50
30
20 | 15
15
15
15
20 | N
N
N
N | 300
300
300
300
100 | 100
100
70
150
300 | 20
15
30
30 | N
N
N
N | 70
70
700
300
500 | | 1139-80
1140-80
1141-80
1142-80
1143-80 | 70
15
15
10 | 70
30
70
30
20 | 2,000
1,000
1,000
1,500
1,500 | N
N
L
L | 15
15
15
15 | 15
5
7
5
5 | 30
30
30
50
50 | 20
15
15
10 | N
N
N
N | 500
300
300
300
500 | 300
100
100
100
100 | 30
20
30
30
20 | N
N
N
N | 300
300
100
300
200 | | 1144-80
1145-80
1146-80
1147-80
1150-20 | 70
5
15
20
20 | 30
20
30
50
20 | 1,000
1,500
700
700
2,000 | 5
5
5
20 | 15
15
20
20
10 | 7
L
5
10
20 | 20
50
30
30
20 | 15
7
20
30
10 | N
N
N
N | 100
100
200
300
300 | 200
30
200
200
50 | 30
20
30
50 | N
N
N
N | 300
100
200
G1,000
30 | | 1150-80
1151-80
1152-80
1153-80
1154-80 | 50
70
70
5
5 | 50
50
50
70
50 | 5,000
700
700
1,000
300 | 50
L
L
5
L | 20
15
15
20
15 | 20
50
30
N
L | 10
20
20
20
15 | 15
15
15
15 | 100
N
N
N
N | 500
300
300
700
700 | 200
200
150
100 | .30
30
20
70
30 | 300
N
N
N | 200
300
200
1,000
70 | | 1155-80
1156-80
1157-80
1158-80
1159-80 | 50
20
30
5
30 | 50
100
100
50
50 | 1,500
2,000
1,500
1,000
700 | 7
7
7
L
L | 20
30
30
20
15 | N
N
N
N
7 | 30
70
70
20
20 | 30
20
20
20
10 | ы
И
И
И | 1,500
1,500
500
1,000
360 | 200
200
300
100
70 | 50
70
70
50
20 | N
N
N
N | G1,000
1,000
G1,000
700
300 | | 1160-80
1161-80
1162-80
1163-80
1164-80 | 30
50
20
30
20 | 50
50
30
30
50 | 1,000
700
1,000
500
1,000 | 5
L
7
5
15 | 20
20
10
10 | N
10
5
20
15 | 15
20
20
20
20 | 15
15
7
10
10 | N
N
N
N | 200
300
200
300
200 | 200
200
50
50
70 | 50
20
20
20
20
30 | N
N
N
N | G1,000
500
300
100
150 | | 1165-80
1166-80
1167-80
1168-80
1169-86 | 50
15
10
15
10 | 50
70
70
100
70 | 500
700
700
1,000 | L
L
5
5 | 15
20
30
30
20 | 20
10
7
7
10 | 20
30
20
50
20 | 15
5
10
10 | и
и
и
и | 200
200
300
200
300 | 50
15
30
100
70 | 20
20
20
50
20 | N
N
N
N | 150
150
200
500
150 | | 1170-80
1171-80
1172-80
1173-80
1174-80 | 10
N
20
10
N | 70
100
70
50
70 | 1,000
700
700
500
1,000 | 5
5
L
L | 30
20
15
20
30 | 5
7
7
5
7 | 30
20
50
20
20 | 15
5
5
10 | N
N
N | 300
300
300
200
300 | 70
20
50
15
50 | 30
20
30
20
30 | N
N
N
N | 500
200
150
100
150 | | 1176-80
1177-80
1178-80
1179-80
1180-30 | 100
30
50
10
20 | 150
50
70
30
100 | 1,000
1,000
2,000
1,000
1,000 | N
N
L
N | 50
15
30
20
30 | 20
10
10
7
7 | 20
15
20
20
15 | 15
10
20
10 | N
N
N | 300
300
300
200
200 | 150
30
100
100
150 |
50
20
50
50
50 | N
N
N
N | 500
70
300
200
200 | ${\bf TABLE~3.} {\bf \longrightarrow} Spectrographic~and~chemical~analyses~of~samples$ | Sample | Coor | dinates | Chem | ical a | nalyses | (ppm) | Semig | uant!tat | ive spe | ctrograph | nic analy | ses (ppm |) | |---|---------------------------------|--|--------------------------|------------------------|-------------------------|-----------------------|---|------------------|----------------------------|-----------------------------------|--|-----------------------|----------------------------------| | | X | Y | Au
(.02) | Cu
(10) | As
(10) | W
(20) | Fe
(500) | Ag
(0.5) | B
(10) | Ba
(20) | Be
(1) | B1
(10) | Co
(5) | | | | Other services of the | | | St | ream sed | imentsCo | nt i nued | | | and the second s | | | | 1181-80
1182-80
1183-80
1184-80
1185-80 | 351
366
353
325
127 | 101
88
90
92
147 | L
. 02
L
L
L | L
L
L
L | N
N
L
L | L
L
L
L | 150,000
20,000
70,000
20,000
15,000 | N
N
N
N | 10
20
20
15
20 | 500
700
500
500
1,000 | !
!
L
L | N
N
N
N | 20
15
20
15
7 | | 1186-80
1187-80
1188-80
1189-80
1190-80 | 126
129
127
131
124 | 151
152
159
164
158 | ն
Լ
Լ | L
L
L
L | 40
N
10
L
N | L
L
L
L | 10,000
20,000
10,000
20,000
10,000 | N
N
N
N | 20
10
10
10
20 | 500
1,000
700
700
700 | 1
1
1.5
1 | N
N
N
N | 5
5
7
7 | | 1192-80
1193-80
1194-80
1195-80
1196-80 | 153
147
148
140
144 | 164
164
155
152
146 | L
L
L
L | L
L
L
L | L
N
L
L | L
L
L
L | 30,000
15,000
50,000
20,000
20,000 | N
N
N
N | 10
10
L
10 | 500
1,000
700
700
700 | 1
L
1
L | N
N
N
N | 20
7
10
5
5 | | 1197-80
1198-80
1199-80
1200-80
1201-80 | 113
106
99
99
101 | 147
141
151
162
162 | .02
L
L
L | L
L
L
L | N
N
N
L | L
L
L
L | 10,000
50,000
30,000
30,000
70,000 | N
N
N
N | 10
10
L
10
L | 700
700
700
700
500 | L
L
I
L | N
N
N
N | 5
5
10
5
10 | | 1202-80
1203-80
1204-80
1205-80
1207-80 | 107
106
79
86
87 | 162
172
112
124
124 | L
L
.02
L
L | ե
ե
ե
ե | N
L
L
N
L | L
L
L
L | 50,000
50,000
20,000
30,000
15,000 | N
N
N
N | L
15
10
20 | 700
500
700
500
500 | L
1
1.5
1 | N
N
N
K
N | 7
10
10
10 | | 1208-80
1209-80
1210-80
1211-80
1213-80 | 84
81
286
292
319 | 134
140
220
225
224 | և
և
և
և | L
L
L
L | N
N
N
L | L
L
L
5
L | 10,000
50,000
20,000
50,000
30,000 | N
N
N
N | 15
10
10
L
10 | 500
500
500
500
500 | 1
1
1
1 | N
N
N
N | L
10
10
10 | | 1214-80
1215-80
1216-80
1217-80
1218-80 | 95
89
90
77
77 | 135
145
152
151
159 | <u>ե</u>
Լ
Լ
Լ | և
Լ
Լ
Լ | N
L
N
L | L
L
L
L | 15,000
30,000
50,000
150,000
50,000 | N
N
N
N | 15
L
10
10 | 700
700
1,000
700
700 | L
1
1
1 | N
N
N
N | 10
20
20
20
20
20 | | 1219-80
1220-80
1221-80
1222-80
1223-80 | 79
91
114
119
126 | 161
165
178
169
169 | ն
ն
ն
և | L
10
L
L | L
N
20
L
N | և
Լ
Լ
Լ | 30,000
30,000
20,000
15,000 | N
N
N
N | L
10
10
10 | 700
500
500
500
500 | 1
1
1.5
1.5 | N
N
N
N | 20
20
10
7
5 | | 1224-80
1225-80
1226-80
1227-80
1228-80 | 177
120
108
116
112 | 128
181
240
255
264 | L
L
L
L | L
L
12
L
L | N
L
N
N | L
L
L
L | 20,000
30,000
50,000
10,000
20,000 | N
N
N
N | 10
L
10
15 | 500
500
700
500
300 | 1.5
1
1
1 | N
N
N
N | 7
7
30
7
10 | | 1229-80
1230-80
1231-80
1232-80
1233-80 | 131
140
150
131
146 | 266
271
256
254
197 | L
L
L
L | և
Լ
Լ
Լ | N
N
15
L
L | L
L
10
L | 10,000
10,000
10,000
70,000
50,000 | N
N
N
N | 10
10
15
N
N | 500
300
500
700
700 | 1
1.5
1
5
5 | N
N
N
N | 7
10
7
N
N | | 1234-80
1235-80
1236-80
1237-80
1238-80 | 157
167
177
183
359 | 154
176
199
180
169 | L
L
L
L | L
L
L
L | L
L
L
30
N | L
L
160
N | 70,000
50,600
100,000
15,000
50,000 | N
N
N
N | N
N
N
20
20 | 700
700
700
500
500 | 5
5
5
1
2 | N
N
N
N | N
N
10
5
7 | | 1239-80
1240-80
1241-80
1242-80
1243-80 | 337
332
335
338
248 | 174
181
194
191
310 | և
և
և | L
L
L | N
N
L
N | N
L
L
N | 20,000
50,000
50,000
30,000
70,000 | N
N
N
N | L
15
15
15 | 700
700
300
700
500 | 2
2
2
2
2 | N
N
N
N | L
7
10
5
10 | $from\ the\ Sierra\ Demonstration\ Project\ area -- Continued$ | Sample | | | | Semig | uantita | itive s | pectrog | raphic | analys | es (ppm) | Conti | nued | | |
---|-----------------------------|-----------------------------|---------------------------------------|-----------------------|----------------------------|---------------------------|----------------------------|----------------------------|------------------|--|-------------------------------|-----------------------------|------------------|------------------------------------| | | (5) | La
(20) | Mn
(10) | Мо
(5) | Nb
(10) | Ni
(5) | РЬ
(10) | Sc
(5) | \$n
(10) | Sr
(100) | V
(10) | Y
(10) | ·Zn
(200) | Zr
(10) | | | | | | | 9 | tream | sedimen | tsCo | ontinued | | | | | | | 1181-80
1182-80
1183-80
1184-80
1185-80 | 20
20
50
15
15 | 70
50
100
50
30 | 1,000
700
1,000
700
500 | N
L
5
N | 30
15
50
15
20 | 5
10
5
10 | 15
20
20
15
15 | 15
15
20
15 | N
N
N
N | 200
300
300
300
200 | 200
50
150
50
20 | 50
20
100
20
30 | N
N
N
N | 500
200
500
150
200 | | 1186-80
1187-80
1188-80
1189-80
1190-80 | 20
15
15
20
20 | 50
30
20
50
20 | 500
500
200
700
500 | N
N
N
N | 15
20
L
15 | 10
10
10
10 | 15
15
15
15 | 10
10
5
10 | N
N
N
N | 200
300
200
200
200 | 30
30
15
50
20 | 20
30
15
30
20 | N
N
N
N | 200
200
70
200
500 | | 1192-80
1193-80
1194-80
1195-80
1196-80 | 20
10
10
20
10 | 30
150
30
30
70 | 700
500
1,000
700
500 | 5
N
N
N | 20
15
15
10
10 | 10
10
5
10 | 30
30
15
20
30 | 15
7
10
10 | N
N
N
N | 200
300
200
200
200 | 100
30
70
20
30 | 20
30
30
20
20 | N
N
N
N | 300
150
700
500
150 | | 1197-80
1198-80
1199-80
1200-80
1201-80 | 10
10
15
10
15 | 50
50
30
70
N | 500
700
1,000
1,000
1,000 | N
N
N
N | 10
10
15
10 | 10
15
15
10
5 | 30
30
20
15
20 | 7
10
15
10
15 | N
N
N
N | 200
200
200
200
200
2 00 | 20
50
70
50
100 | 15
20
30
30
30 | N
N
N
N | 150
70
150
200
700 | | 1202-80
1203-80
1204-80
1205-80
1207-80 | 10
20
20
20
20 | 20
30
50
30
50 | 1,500
1,000
1,000
700
300 | N
N
N
N | L
20
20
15
20 | 5
7
15
10 | 15
15
20
15 | 10
15
15
15 | N
N
N
N | 200
200
300
150
150 | 50
100
50
70
150 | 20
50
50
30
50 | N
N
N
N | 150
1,000
300
700
300 | | 1208-80
1209-80
1210-80
1211-80
1213-80 | 15
50
20
30
200 | 20
30
70
50
30 | 200
500
1,000
1,000
500 | N
N
L
S
N | 15
20
20
20
20 | 5
10
10
20
30 | 15
10
15
20
20 | 10
20
15
7
10 | N
N
N
N | 200
150
300
300
300 | 30
70
50
50
50 | 20
50
20
20
20 | N
N
N
N | 500
1,000
150
100
150 | | 1214-80
1215-80
1216-80
1217-80
1218-80 | 20
15
20
50
20 | 30
20
20
30
20 | 300
1,500
1,000
1,000
700 | N
N
N | 10
20
20
30
15 | 10
7
10
7
7 | 20
15
30
20
15 | 10
15
20
20
15 | N
N
N
N | 200
300
300
300
200 | 20
100
50
200
70 | 20
30
50
70
30 | N
N
N
N | 100
300
500
61,000
300 | | 1219-80
1220-80
1221-80
1222-80
1223-80 | 20
30
20
10
15 | 50
50
30
30
30 | 1,000
1,000
500
500
700 | N
N
N
N | 20
10
15
10
20 | 7
15
10
10 | 20
20
20
15 | 15
10
10
10 | N
N
N
N | 300
300
200
200
200 | 70
50
30
30
30 | 20
15
20
20
30 | N
N
N
N | 200
100
150
200
300 | | 1224-80
1225-80
1226-80
1227-80
1228-80 | 15
20
700
15
20 | 30
30
30
50
30 | 500
500
1,000
300
200 | N
N
N | 15
10
10
10 | 10
10
70
10 | 15
15
20
15 | 10
10
30
10
7 | N
N
N
N | 200
200
500
300
200 | 50
50
100
30
50 | 20
20
20
20
15 | N
N
N
N | 200
150
150
150
150 | | 1229-80
1230-80
1231-80
1232-80
1233-80 | 10
20
20
20
15 | 20
70
30
50
N | 150
200
150
1,000
500 | N
N
N
N | 10
15
30
50
30 | 10
15
10
5 | 20
20
20
10
15 | 10
10
10
20
10 | N
N
N
N | 300
200
300
500
500 | 20
30
20
100
100 | 20
10
30
70
50 | N
N
N
N | 200
200
150
1,000
500 | | 1234-80
1235-80
1236-80
1237-80
1238-80 | 20
20
30
15
10 | 50
50
50
50
50 | 1,000
700
500
700
500 | N
N
N
N | 20
20
30
20
10 | 5
5
10
5 | 50
20
20
20
20 | 15
15
10
10 | N
N
N
N | 500
200
300
200
200 | 100
100
200
30
70 | 50
50
50
30
15 | N
N
N
N | 500
500
500
150
150 | | 1239-80
1240-80
1241-80
1242-80
1243-80 | L
10
15
5
30 | 20
70
30
50
20 | 500
500
500
300
1,500 | L
5
L
15 | L
10
10
10 | 5
10
5
15 | 15
15
20
20
50 | 5
10
10
5 | N
N
N
N | 150
200
200
300
200 | 30
70
70
50
100 | 15
30
30
10
30 | N
N
N
N | 100
100
150
70
150 | Table 3.—Spectrographic and chemical analyses of samples | Sample | Coordi | nates | Chem | ical a | nalyses | (ppm) | Semio | uantitat | ive spe | ctrograp | ic analy | ses (ppr | n) <u>)</u> | |---|---------------------------------|---------------------------------|---------------------|-------------------------|-------------------------|----------------------|---|---------------------------|----------------------------|-------------------------------------|---------------------------|------------------|--------------------------| | | x | Y | Au
(.02) | Cu
(10) | As
(10) | W
(20) | Fe
(500) | Λg
(0.5) | 8
(10) | Ва
(20) | Be
(1) | Bi
(10) | Ço
(5) | | | | | | | Stream | m sedime | ntsConti | nued | | | | | | | 1244-80
1245-80
1246-80
1247-80
1248-80 | 239
236
241 | 326
313
323
326
326 | L
L
L | 2 l
L
L
L | L
N
N
N | L
N
N
N | 100,000
50,000
50,000
50,000
70,000 | N
N
N
N | 10
15
20
15 | 300
500
500
500
500 | 1.5
2
2
2
2 | N
N
N
N | 20
7
7
10
10 | | 1249-80
1250-80
1251-80
1252-80
1253-80 | 40
39
46 | 325
151
152
140
140 | L
L
L | L
L
10
L
L | 10
10
20
10 | N
N
N
N | 20,000
50,000
150,000
100,000
70,000 | N
N
N | 10
10
10
10 | 500
700
500
700
500 | 2
1.5
1.5
1.5 | N
N
N
N | 5
7
7
15
7 | | 1254-80
1255-80
1256-80
1257-80
1258-80 | 47
46
179 | 108
113
115
249
255 | L
L
L | L
L
L
11 | 10
N
10
10 | N
N
L
L | 30,000
50,000
100,000
50,000
100,000 | N
N
N | L
10
10
15 | 700
700
700
500
700 | 2
2
1.5
2 | N
N
N
N | 5
7
7
7
10 | | 1259-80
1260-80
1261-80
1262-80
1263-80 | 155
152
142 | 267
282
287
290
288 | լ
Լ
Լ | L
L
L
13 | L
10
10
N
L | N
N
N
N | 70,000
100,000
100,000
50,000
150,000 | N
N
N
N | 10
10
10
10 | 700
500
700
700
700 | 2
2
1
1.5
2 | N
N
N
N | 7
10
15
10 | | 1264-80
1265-80
1266-80
1267-80
1268-80 | 113
108
300 | 298
272
270
126
243 | լ
Լ
Լ | L
L
L | L
N
L
20
L | N
N
N | 30,000
70,000
100,000
100,000
50,000 | N
N
N | 15
10
10
15 | 700
500
700
700
700 | 1.5
1.5
1.5
1.5 | N
N
N
N | 5
10
10
7 | | 1269-80
1271-80
1272-80
1273-80
1274-80 | 177
184
187 | 145
236
213
224
221 | լ
Լ
Լ | L
L
L | 10
L
L
L | N
N
N
N | 100,000
30,000
30,000
20,000
30,000 | N
N
N
N | 10
20
10
20
20 | 500
700
700
500
700 | 1.5
2
1.5
1.5 | N
N
N
N | 15
5
5
5
7 | | 1275-80
1276-80
1277-80
1278-80
1279-80 | 373
369
368
362
360 | 186
198
205
207
206 | i
i
i
i | L
L
L | L
10
N
20
N | N
N
N
N | 30,000
30,000
30,000
100,000
30,000 | и
и
и
и | 20
20
15
10
20 | 700
500
500
500
500 | 2
2
3
1.5
2 | N
N
N
N | 7
7
5
7
5 | | 1280-80
1282-80
1284-80
1285-80
1286-80 | 360
343
339
327
322 | 209
208
204
200
194 | i
L
i
i | L
L
L | N
L
L
L | N
N
N
N | 30,000
50,000
30,000
70,000
50,000 | N
N
N | 20
20
20
20
10 | 500
500
700
700
1,000 | 2
2
2
2
2 | N
N
N
N | 5
10
5
10
7 | | 1287-80
1288-80
1289-80
1290-80
1291-80 | 202
196
210
213
212 |
297
290
288
283
273 | L
L
L | L
17
L
L | L
L
L | N
N
N
N | 100,000
100,000
70,000
20,000
70,000 | N
N
N | 10
10
10
10 | 700
700
700
700
700 | 2
1.5
2
2
1.5 | N
N
N | 15
10
7
5
7 | | 1292-80
1293-80
1294-80
1295-80
1296-80 | 213
222
225
97
88 | 266
256
256
188
186 | L
0.20
L
L | 15
L
L
L | N
L
L
10 | N
L
N
N | 100,000
150,000
70,000
30,000
50,000 | t)
N
N | 10
10
10
10 | 700
700
700
700
700 | 1.5
1.5
1.5
1.5 | N
N
N
N | 10
15
10
7
7 | | 1297-80
1298-80
1299-80
1300-80
1301-80 | 86
82
82
72
73 | 185
189
190
194
197 | L
L
L
L | L
11
L
L
10 | N
10
L
L
L | ;;
;;
;;
;; | 15,000
30,000
30,000
70,000
150,000 | N
N
N
N | 10
10
10
10 | 360
700
700
700
700 | 2
1.5
1.5
1.5 | N
N
N
N | N
7
7
7
15 | | 2001-80
2002-80
2003-80
2004-80
2005-80 | 234
225
230
232
344 | 148
151
160
160
160 | L
L
L
. 04 | L
L
L | L
L
L
N | L
L
L
L | 70,000
50,000
100,000
200,000 | 11
14
14
1!
N | 10
15
10
10
20 | 1,000
700
1,000
700
700 | 1
3
1
N
2 | N
N
N
N | 10
10
15
15 | $from\ the\ Sierra\ Demonstration\ Project\ area -- Continued$ | Sample | | | | | | | | | analys | | Conti | | | | |---|-----------------------------|------------------------------|---|------------------------|----------------------------|----------------------------|----------------------------|---------------------------|------------------|---------------------------------|---------------------------------|----------------------------|----------------------|--------------------------------------| | | Cr
(5) | Ļa
(20) | Mn
(10) | Mo
(5) | Nb
(10) | иі
(5) | РЬ
(10) | Sc
(5) | Sn
(10) | Sr
(100) | V
(10) | Y
(10) | Zn
(200) | Zr
(10) | | | | | ····· | | | \$tr | eam se | diments | Conti | nued | | | | | | 1244-80
1245-80
1246-80
1247-80
1248-80 | 70
10
10
10
15 | 20
30
30
100
100 | 1,000
1,000
700
700
700 | 30
5
5
N
N | 10
10
10
10 | 20
10
10
5
7 | L
20
20
20
15 | 30
5
5
10 | N
N
N
N | 200
200
150
300
300 | 150
70
70
100
100 | 30
30
20
30
30 | N
N
N
N | 100
200
150
200
500 | | 1249-80
1250-80
1251-80
1252-80
1253-80 | 10
15
50
30
30 | 30
20
50
30
50 | 700
500
500
700
500 | 5
N
N
N | 10
10
15
10 | 10
7
7
7
10 | 20
15
10
15
15 | 10
7
10
30
20 | N
N
N
N | 300
300
200
300
200 | 50
70
150
150
100 | 10
10
50
50
30 | N
N
N
N | 50
100
300
200
150 | | 1254-80
1255-80
1256-80
1257-80
1258-80 | 10
10
20
30
30 | 50
20
50
50
70 | 500
500
700
700
700 | N
N
N
10
L | 10
10
10
10
30 | 5
7
15 | 20
20
15
20
15 | 5
10
10
10 | L
N
N
N | 200
300
300
300
200 | 50
50
100
70
150 | 15
20
30
20
50 | N
N
N
N | 150
150
200
150
150 | | 1259-80
1260-80
1261-80
1262-80
1263-80 | 20
30
30
100
30 | 100
50
30
30
70 | 700
700
700
700
700 | L
N
S
L | 15
10
10
15 | 10
10
15
20
10 | 20
15
15
15
15 | 10
10
15
10 | N
N
N
N | 300
200
500
300
300 | 70
100
200
100
150 | 30
30
20
20
30 | N
N
N
N | 100
200
200
150
500 | | 1264-80
1265-80
1266-80
1267-80
1268-80 | 70
15
50
30
70 | 70
70
70
30
30 | 300
500
700
700
500 | 5
N
5
L
N | 10
10
30
20
10 | 15
7
15
10
15 | 20
20
10
15
20 | 5
15
20
7 | N
N
N
N | 200
300
300
300
300 | 50
100
150
150
70 | 15
15
50
50 | N
N
N | 100
100
150
150
150 | | 1269-80
1271-80
1272-80
1273-80
1274-80 | 30
10
10
10
15 | 30
30
30
50 | 700
200
200
300
500 | N
7
5
5 | 10
10
10
15 | 7
5
5
5
7 | 10
15
15
15 | 20
5
10
10 | N
N
N
N | 300
300
300
300
300 | 150
50
70
70
70 | 30
20
30
30
30 | N
N
N
N | 150
150
300
700
200 | | 1275-80
1276-80
1277-80
1278-80
1279-80 | 10
10
10
10 | 50
50
50
50
30 | 700
700
500
700
700 | 5
L
5
5 | 15
15
10
20
10 | 5
5
5
7 | 10
15
30
15
20 | 10
10
7
7
7 | N
N
N
N | 300
300
300
300
200 | 70
70
50
100
70 | 30
30
20
30
20 | N
N
N | 300
150
100
150
100 | | 1280-80
1282-80
1284-80
1285-80
1286-80 | 7
30
5
20
5 | 30
50
50
70
30 | 300
700
700
700
700 | 5
L
L
5
5 | 10
10
10
20
10 | 5
15
5
10
L | 15
30
20
50
15 | 5
15
70
10
7 | N
N
N
N | 300
300
300
300
200 | 70
100
50
100
70 | 15
20
20
70
30 | N
N
N
N | 100
100
100
200
300 | | 1287-80
1268-80
1289-80
1290-80
1291-80 | 150
150
70
15 | 30
50
20
30
50 | 700
700
700
300
500 | N
N
5
5 | 10
10
50
10 | 50
30
20
10 | 20
15
20
20
20 | 10
10
5
L
10 | N
N
N
N | 300
300
300
300
300 | 150
150
100
50
100 | 20
30
50
10 | K
N
N
N | 300
200
200
150
300 | | 1292-80
1293-80
1294-80
1295-80
1296-80 | 20
150
50
10 | 70
70
70
30
30 | 700
700
500
500
300 | L
N
L
N | 10
10
10
10 | 15
50
20
15
5 | 15
20
15
15 | 15
10
19
7
7 | N
N
N
N | 500
300
500
300
300 | 150
150
100
70
100 | 30
30
30
20
20 | N
N
N
N | 200
100
70
200
300 | | 1297-80
1298-80
1299-80
1300-80
1301-80 | 5
15
15
15
50 | 20
30
30
50
70 | 150
300
200
300
300 | N
N
1! | 10
10
10
10 | L
7
7
7
10 | L
15
15
20
10 | 7
10
7
10 | N
N
N
N | 200
300
300
300
500 | 50
70
70
70
200 | 20
20
30
20
50 | N
N
N
N | 150
150
150
300
300 | | 2001-80
2002-80
2003-80
2004-80
2005-80 | 30
15
50
100
20 | 30
30
30
20
50 | 1,000
1,500
1,600
1,600
1,500 | 10
7
5
L
L | 20
15
20
20
15 | 7
7
7
10
5 | 30
30
20
15
50 | 15
20
20
15 | N
N
N
L | 300
700
500
200
200 | 200
150
300
300
150 | 70
30
50
70
30 | 11
11
11
11 | 200
1,000
500
G1,000
200 | ${\bf TABLE~3.} {\bf _Spectrographic~and~chemical~analyses~of~samples}$ | Sample | Coordi | nates | Chem | ical a | nalyses | (ppm) | Semiq | uantitat | lve spe | ctrograph | ic analy | ses (ppm |) | |--------------------|--------------------|------------|-------------|------------|--------------|-----------|----------------------------|-------------|------------|--------------------|-----------|------------|----------------| | | x | .У | Au
(.02) | Cu
(10) | As
(10) | ₩
(20) | F.e
(500) | Ag
(0.5) | B.
(10) | Ва
(20) | Ве
(1) | Bi
(10) | Co
(5) | | | | | · | | . <u>S t</u> | ream se | dimentsC | ontinued | | - | | | | | 2006-80 | 329 | 150 | L | L | N | L | 20,000 | N | 20 | 500 | 2 | N | 7 | | 2007-80 | 320 | 150 | L | L | N | L | 70,000 | N | 10 | 700 | 2 | N | 10 | | 2008-80
2009-80 | 320
206 | 150
143 | L
L | L
L | N
N | 40
L | 200,000
20,000 | N
N | 20
10 | 150
1,500 | 2
2 | N
N | 15
5 | | 2011-80 | 200 | 150 | Ĺ | Ĺ | L | Ĺ | 30,000 | N | L | 700 | 1 | N | 5 | | 2012-80 | 191 | 158 | L | L | L | L | 30,000 | N | 10 | 700 | 1 | N | 7 | | 2013-80 | 158 | 175 | L | L | N | L | 70,000 | N | 10 | 700 | 2 | N | 7 | | 2014-80
2015-80 | 165
130 | 176
200 | L | L
L | N
N | L
40 | 50,000
200,000 | N
N | 10
10 | 700
30 0 | 2
2 | N
N | 7
10 | | 2015-P | 130 | 200 | 7.4 | 15 | 10 | 500 | 200,000 | N | L | 70 | N | N | 30 | | 2016-80 | 140 | 193 | L | L | N | L | 70,000 | N | 10 | 700 | 1.5 | N | 7 | | 2016-P | 140 | 193 | L | 10 | L | 40 | 200,000 | N | N | 50 | N | N | 30 | | 2017-80
2018-80 | 177 | 283 | L | L | N | L | 70,000 | N | 10 | 500 | 1.5 | N | 15 | | 2019-80 | 293
200 | 279
263 | .02
L | L
L | N
N | L | 100,000
100,000 | N
N | 10
L | 700
300 | 2
2 | N | 15
10 | | 2020-80 | 197 | 251 | L | 12 | N | L | 70,000 | N | 10 | 500 | 2 | N | 10 | | 2021-80 | 291 | 295 | L | L | N | L | 30,000 | N | 10 | 300 | 2 | N | 7 | | 2022-80
2023-80 | 298
300 | 306
305 | L
L | L
10 | N
N | L | 30,000
30,000 | N
N | 15
15 | 300
300 | 3
2 | N
N | 5
7 | | 2024-80 | 312 | 307 | Ĺ | L | N | ì | 50,000 | N | 15 | 300 | 2 | N | 7 | | 2025-80 | 317 | 303 | L | L | N | L | 70,000 | N | 10 | 300 | 2 | N | 7 | | 2026-80 | 314 | 294 | L | L | N | L | 20,000 | N | 15 | 300 | 1.5 | N | 5 | |
2027-80
2028-80 | 307
341 | 314
306 | L
L | L
L | N
N | L
L | 20,000
20,000 | N
N | 10
15 | 200
300 | 2
2 | N
N | 5
5 | | 2029-80 | 334 | 302 | Ĺ | Ĺ | N | Ĺ | 30,000 | N | 10 | 300 | 2 | N | 5 | | 2030-80 | 304 | 280 | .02 | L | N | L | 50,000 | N | 15 | 300 | 2 | N | 10 | | 2034-80 | 274 | 170 | L | L | L | L | 100,000 | N | 10 | 300 | 1.5 | N | 20 | | 2035-80
2036-80 | 103
113 | 321
306 | L
L | L
L | N
N | L
L | 100,000
70,000 | N
N | 15
15 | 500
300 | 2
2 | N
N | 10
7 | | 2037-80 | 115 | 305 | Ĺ | Ĺ | N | L | 150,000 | N | 15 | 500 | 1 | N | 7 | | 2038-80 | 238 | 182 | .02 | L | 20 | L | 50,000 | N | L | 700 | N | N | 5 | | 2039-80 | 233 | 188 | .02 | i. | 10 | L | 50,000 | N | L | 700 | N | N | L | | 2040-80
2041-80 | 228
222 | 200
201 | .02 | L | L
L | L | 150,000
50,000 | N
N | 30
L | 1,000
1,000 | N
N | N
N | 15
10 | | 2042-80 | 210 | 200 | .02 | Ĭ. | Ĺ | Ĺ | 30,000 | N | Ĺ | 1,000 | N | N | Ľ | | 2043-80 | 202 | 204 | .02 | L | L | L | 100,000 | N | 10 | 1,000 | N | N | 10 | | 2501-80 | 148 | 194 | .06 | L | L | L | 50,000 | N | 10 | 700 | 1.5 | N | 5 | | 2501-P
2502-80 | 148
145 | 194
189 | .20
L | L
L | N
N | 80
L | 200,000
2 0, 000 | N
N | 20
10 | 70
150 | 1
2 | N
N | 20
5 | | 2502-P | 145 | 189 | Ĺ | 10 | Ľ | 20 | G200,000 | N | Ĺ | 70 | N | N | 50 | | 2503-80 | 190 | 288 | L | 27 | L | L | 200,000 | N | L | 700 | N | N | 30 | | 2504-80 | 199 | 296 | L | 46 | 10 | L | 200,000 | N | L | 700 | 1 | N | 30 | | 2505-80
2506-80 | 210
2 09 | 279
279 | L
L | 10
14 | L
L | Ł
L | 100,000
150,000 | N | 10
L | 1,000
700 | 2
1.5 | N
N | 10
10 | | 2507-80 | 208 | 272 | Ĺ | 88 | Ĺ | Ē | 200,000 | N | Ĺ | 500 | N | N | 50 | | 2508-80 | 207 | 273 | L | 15 | 10 | L | 200,000 | N | L | 700 | 2 | N | 15 | | 2509-80
2510-80 | 210
239 | 196
261 | L
.10 | L
17 | N | L | 20,000 | N | 10
10 | 300
200 | 2
1.5 | N
N | 7
10 | | 2511-80 | 244 | 166 | L. (0 | L | L
N | L
L | 70,000
20,000 | N | 10 | 300
300 | 2 | N | 7 | | 2512-80 | 232 | 173 | .02 | Ĺ | N | ĩ | 70,000 | N | 10 | 300 | 2 | N | 7 | | 2513-80 | 288 | 300 | L | L | N | L | 70,000 | N | 20 | 200 | 3 | N | L | | 2514-80 | 314
216 | 307 | L | L | N | L | 50,000 | N | Ļ | 200 | 3 | N | 5 | | 2515-80
2516-80 | 316
309 | 296
315 | L
L | 10
L | N
N | L
L | G200,000
20,000 | N
N | L
10 | 300
150 | 2
2 | N
N | 10
5 | | 2517-80 | 302 | 180 | Ĺ | Ĺ | N | Ĺ | 20,000 | N | 10 | 300 | 2 | N | 5
7 | | 2519-80 | 283 | 270 | L | L | N | L | 15,000 | N | 10 | 150 | 2 | N | L | | 2520-80
2521-80 | 311 | 275 | L | L | N | L | 50,000 | N | 10 | 300 | 2 | N
N | 7 | | 2521-00
2522-80 | 310
309 | 273
262 | L
L | L
L | N
.N | l.
N | 50,000
50,000 | N
N | 10
20 | 300
300 | 2
2 | N
N | 10
5 | | 2523-80 | 313 | 256 | Ē | Ĺ | N | N | 20,000 | N | 10 | 300 | 2 | N | 5 | from the Sierra Demonstration Project area—Continued | Sample | | | | Semio | uantita | tive sp | ectrogra | aphic a | nalyses | (ppm)- | -Contir | ued | | | |---|----------------------|------------------------------|---|------------------------|----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|---------------------------------|------------------------------------|----------------------------------|------------------|---| | | Cr
(5) | La
(20) | Mn
(10) | Mo
(5) | Nb
(10) | Ni
(5) | Pb
(10) | \$c
(5) | Sn
(10) | Sr'
(100) | V
(10) | Y
(10) | Zn
(200) | Zr
(10) | | | | | | | | Stream | sediment | ts~-Con | tinued | | | | | | | 2006-80
2007-80
2008-80
2009-80
2011-80 |) 10
) 50
) 15 | 20
70
200
150
20 | 700
1,500
1,500
1,500
700 | ւ
5
5 | 10
20
15
20
10 | 5
5
20
5
7 | 30
20
20
30
30 | 5
7
15
10
7 | L
N
L
N | 200
200
100
300
500 | 50
150
300
100
70 | 10
30
70
50
20 | N
N
N
N | 50
300
700
300
200 | | 2012-80
2013-80
2014-80
2015-80
2015-P | 20
15 | 20
20
30
20
20 | 700
1,000
1,600
700
1,000 | L
5
N
N
5 | 10
15
15
20
30 | 7
5
5
5
15 | 30
50
30
10
N | 10
15
15
10
N | N
N
L
N | 500
300
300
100
N | 100
150
100
300
1,000 | 20
30
30
30
150 | N
N
N
N | 100
500
200
G1,000
1,000 | | 2016-80
2016-P
2017-80
2018-80
2019-80 | 1,000
150
50 | 20
N
50
50
50 | 700
1,000
700
1,000 | 5
N
L
L | 30
15
20
20 | 15
15
50
15 | 50
N
20
30
20 | 15
N
15
15 | N
N
N
L | 200
N
300
500
300 | 150
1,500
150
150
150 | 30
150
30
30
30 | N
N
N
N | 1,000
1,000
200
500
300 | | 2020-80
2021-80
2022-80
2023-80
2024-80 | 15
5
10 | 70
20
30
20
50 | 700
1,000
1,000
1,000
1,500 | L
5
5
7
5 | 20
15
20
15
20 | 15
7
5
10
5 | 20
50
50
100
70 | 15
10
10
10 | L
N
N
N | 500
200
200
500
100 | 150
70
70
70
70
100 | 50
20
20
20
20
50 | N
N
N
N | 300
70
300
100
700 | | 2025-80
2026-80
2027-80
2028-80
2029-80 | 5
5
5 | 50
50
50
50
50 | 700
700
700
1,000
500 | 7
L
L
5
20 | 20
10
15
15 | 5
5
5
5 | 30
70
20
70
30 | 7
5
5
5 | N
N
N
N | 500
100
200
300
300 | 100
20
30
20
50 | 50
20
20
10
20 | N
N
N
N | 200
70
100
70
150 | | 2030-80
2034-80
2035-80
2036-80
2037-80 | 50
100
15 | 30
150
30
20
30 | 700
2,000
700
500
700 | L
5
L
5
L | 15
20
20
15
15 | 7
5
50
7
30 | 30
20
30
50
20 | 15
20
15
5
15 | N
N
N
N | 200
200
500
200
200 | 70
300
150
100
150 | 30
150
30
10
20 | N
N
N
N | 150
700
300
150
300 | | 2038-80
2039-80
2040-80
2041-80
2042-80 | 5
70
10 | 50
50
150
50
L | 700
500
1,000
700
500 | L
10
7
L | 10
10
30
10 | N
5
N
N | 15
10
15
20
15 | 15
10
30
20
15 | N
100
150
50
50 | 500
200
700
500
500 | 100
100
300
150
100 | 50
30
70
50
30 | N
N
N
N | 700
150
G1,100
300
1,000 | | 2043-80
2501-80
2501-P
2502-80
2502-P | 20
200 | 50
N
50
20
20 | 1,000
1,000
700
500
1,000 | 5
N
L
N | 20
15
20
10
15 | L
5
10
5
20 | 10
30
N
30
N | 15
10
20
10
7 | 50
N
N
N | 300
500
200
200
N | 300
100
300
100 | 70
20
200
10 | N
N
N
N | 50
300
700
70
1,000 | | 2503-80
2504-80
2505-80
2506-80
2507-80 | 300
30
70 | 50
30
70
50
50 | 1,000
1,500
1,500
1,000
1,500 | N
N
5
N | 15
15
30
30
20 | 50
50
10
20
70 | N
50
30
N | 7
10
10
7
7 | N
N
N
N | 300
500
700
500
100 | 500
500
200
200
700 | 50
50
70
30
100 | N
N
N | G1,000
1,000
200
700
G1,000 | | 2508-80
2509-80
2510-80
2511-80
2512-80 | 10
50
5 | 150
29
30
20
30 | 2,000
500
700
700
1,000 | 5
N
L
N
L | 50
10
15
10
15 | 50
10
5
5
5 | 30
30
30
30
30 | 10
5
15
10
15 | N
N
N
N | 500
500
200
300
500 | 300
150
300
70
150 | 70
10
30
15
50 | N
N
N
N | 1,000
50
500
70
700 | | 2513- 80
2514-80
2515-8 0
2516-80
2517-80 | 5
15
5 | 30
50
100
30
100 | 700
700
700
700
700
1,000 | L
N
7
L | 15
10
15
15 | 5
5
5
5 | 50
50
30
50
30 | 5
7
5
10 | N
N
N
N | 300
500
300
300 | 30
70
300
50
70 | 20
15
30
15
30 | N
N
N
N | 100
100
300
70
150 | | 2519-80
2520-80
2521-80
2522-80
2523-80 | 5
15
10 | 20
150
20
50
30 | 700
1,500
1,000
1,500
500 | N
7
L
L
5 | 10
15
15
15 | 5
5
5
5 | 50
50
30
30
30 | 5
10
10
10
5 | N
N
N
N | 100
300
300
300
300 | 20
100
150
100
70 | L
30
15
15 | N
N
N
N | 30
150
70
100
50 | Table 3.—Spectrographic and chemical analyses of samples | Sample | Coord | inates | Chemi | cal an | alyses | (ppm) | S'em i q | uantitativ | e spect | rographic | analys | ses (ppm | n) | |---|---------------------------------|---------------------------------|-----------------------------|--------------------------|--------------------|------------------------|---|-------------------|----------------------------|---|---------------------------|------------------------|----------------------------| | | X | Y | Au
(.02) | Cu
(10) | As
(10) | W
(20) | Fe
(500) | Ag
(0.5) | B
(10) | Ва
(20) |
Ве
(1) | Bi
(10) | Co
(5) | | | | | | | | Str | eam sedimen | tsContin | ued | | | | | | 2524-80
2525-80
2526-80
2527-80
2528-80 | 308
268
270
280
278 | 244
240
240
249
250 | L
L
L
.02
L | L
L
L
L | N
N
N
N | L
N
N
L
N | 50,000
50,000
20,000
15,000
70,000 | N
N
N
N | 10
10
10
10 | 1,000
300
700
300
500 | 2
2
2
2
2 | N
N
N
N | 7
10
5
5 | | 2535-80
2535-P
2536-80
3001-80
3002-80 | 158
158
148
208
202 | 186
186
175
129
126 | L
1.6
L
.12
L | 20
L
L
L | N
L
N
L | 80
L
30
L | 70,000
G200,000
100,000
200,000
G200,000 | N
N
N
N | 10
10
10
30
30 | 700
70
500
500
100 | 2
N
2
N
1 | N
N
N
N | 10
30
15
10
30 | | 3003-80
3004-80
3006-80
3007-80
3008-80 | 196
223
203
207
189 | 122
113
112
114
105 | .02
L
L
.02 | L
L
L
L | ե
ե
ե | <u>։</u>
Լ
Լ | 100,000
70,000
70,000
200,000
200,000 | N
N
N
N | L
10
L
L | 1,000
1,000
700
700
700 | N
2
L
L | N
N
N
N | 5
15
15
15
20 | | 3009-80
3010-80
3011-80
3012-80
3013-80 | 197
189
188
186
180 | 114
117
126
112
106 | .02
.02
.02
L
L | L
L
L
L | L
L
L
10 | L
L
L | 100,000
100,000
200,000
200,000
150,000 | N
N
N
N | 20
30
L
L
L | 1,000
1,500
1,500
1,000
500 | N
N
L
L | N
N
N
N
20 | 5
15
20
15 | | 3014-80
3015-80
3016-80
3017-80
3018-80 | 166
171
147
170
172 | 107
106
104
118
117 | L
.04
L
L | L
L
L
L | <u>L</u>
L
L | L
20
L
L
L | 150,000
6200,000
100,000
100,000
6200,000 | N
N
N
N | L
L
L
30 | 1,000
150
1,000
500
500 | 2
N
2
1
L | N
N
N
N | 15
30
7
15
30 | | 3019-80
3020-20
3020-80
3021-80
3022-80 | 178
166
166
154
161 | 125
126
126
128
114 | .02
L
.10
L | և
և
և
և | L
L
L | L
L
L
L | 200,000
700
100,000
100,000
100,000 | N
N
.5
N | 20
L
L
L
20 | 500
300
700
500
700 | L
1
1.5
N
N | N
N
N
N | 15
L
5
5 | | 3023-80
3024-80
3025-80
3026-80
3027-80 | 138
140
128
126
125 | 107
109
119
121
126 | 3.8
L
L
L | L
10
L
10 | N
N
N
N | L
L
L
L | 30,000
30,000
50,000
30,000
50,000 | N
N
N
N | 10
10
10
10 | 300
300
200
150
200 | 2
2
2
2
2 | N
N
N
N | 7
7
7
7
7 | | 3028-80
3029-80
3030-80
3031-80
3032-80 | 120
95
94
89
89 | 133
177
175
178
177 | .04
L
.02
L
L | 12
20
L
L
11 | N
N
N
N | L
L
L
20
L | 20,000
70,000
70,000
100,000
G200,000 | N
N
N
N | L
L
L
10
L | 150
150
200
7
150 | 2
2
2
2
1 | N
N
N
N | 5
7
7
5
20 | | 3033-80
3034-80
3035-80
3036-80
3038-80 | 66
58
65
70
73 | 157
166
172
170
167 | L
L
. 16
L
L | L
L
L
L | N
N
N | L
L
L
L | 150,000
150,000
150,000
6200,000
100,000 | N
N
N
N | L
L
20
L | 5
500
200
100
300 | 2
2
1.5
1 | и
И
И | 10
10
7
30
10 | | 3039-80
3040-80
3041-80
3042-80
3043-80 | 139
128
146
101
109 | 118
132
130
107
113 | լ
լ
լ | L
L
13
L
L | N
N
N
N | 20
L
L
L | 20,000
30,000
30,000
50,000
50,000 | N
N
N
N | 10
30
10
L | 300
300
300
300
200 | 2
2
2
2
2 | N
N
N
N | 5
7
7
5
5 | | 3044-80
3047-80
3048-80
3049-80
3050-80 | 114
103
67
70
62 | 120
124
120
116
136 | L
L
L
L | L
L
L
L | N
N
N
N | L
L
L
L | 30,000
70,000
100,000
30,000
50,000 | N
N
N
N | 20
10
15
L
10 | 300
200
200
200
300 | 2
2
1
1.5
1.5 | N
N
N
N | 5
7
10
5
10 | | 3051-80
3052-80
3053-80
3054-80
3055-80 | 72
163
153
156
151 | 136
152
156
106
118 | L
.02
L
.04
L | L
11
L
L | N
N
N
N | և
Լ
Լ | 50,000
50,000
20,000
150,000
70,000 | N
N
N
N | 10
30
10
10
20 | 300
300
300
500
700 | 2
2
2
2
2 | N
N
N
N | 7
10
7
10
7 | from the Sierra Demonstration Project area—Continued | Sample | | | S | em i qu | antita | tive | spectrog | raphic | analyse | s (ppm |)Cont | inued | | | |---|-------------------------------|-----------------------------|---|-----------------------|----------------------------|--------------------------|----------------------------|----------------------------|--------------------------|----------------------------------|-----------------------------------|-------------------------------|---------------------------|--| | | Cr
(5) | La
(20) | Mn
(10) | ·Mo
(5) | Nb
(10) | Ni
(5) | Pb
(10) | Sc
(5) | Sn
(10) | \$r
(100) | v
(10) | .y
(10) | Zn
(200) | Zr
(10) | | | | | | | | | Stream | sedime | ntsCo | nt i nue | d | | | | | 2524-80
2525-80
2526-80
2527-80
2528-80 | 15
50
5
5
15 | 70
20
30
150
50 | 1,500
700
1,000
1,500
1,500 | L
N
N
N
5 | 10
10
10
15
50 | 5
10
10
5
5 | 30
30
30
30
30 | 15
10
7
7
20 | N
N
N
N | 500
300
300
100
300 | 100
100
50
30
150 | 30
20
20
50
50 | N
N
N | 300
70
50
150
300 | | 2535-80
2535-P
2536-80
8001-80
8002-80 | 20
1,000
50
150 | 30
50
20
50
N | 700
700
700
700
700 | L
N
N
10 | 10
10
10
15
10 | 10
5
10
N
15 | 30
10
10
15
20 | 15
70
20
20
7 | N
N
N
30
N | 200
N
300
300
100 | 150
300
200
300
300 | 50
200
50
70
30 | N
N
N
N | 300
G1,000
300
G1,000
500 | | 8003-80
8004-80
8006-80
8007-80
8008-80 | 30
30
50
150
200 | L
30
50
N
30 | 1,000
1,500
1,500
1,500 | L
N
5
N | 15
20
50
15
20 | N
7
L
5 | 20
70
20
20
20 | 30
15
15
15 | 20
L
L
N
N | 300
500
200
200
300 | 300
200
300
700
700 | 70
30
100
50 | N
N
N
N | G1,000
500
300
700
G1,000 | | 3009-80
3010-80
3011-80
3012-80
3013-80 | 50
20
150
100
150 | 50
L
50
N
50 | 1,000
1,500
1,500
1,500
1,000 | 10
7
L
N | 20
20
30
20
30 | N
N
N
5 | 20
20
50
10
20 | 30
50
50
20
15 | 20
15
N
L | 700
700
,000
200
300 | 300
300
300
500
500 | 70
100
70
70
70 | N
N
N
N | G1,000
1,000
1,000
1,000
700 | | 3014-80
3015-80
3016-80
3017-80
3018-80 | 100
700
30
30
200 | 50
30
200
50
L | 1,500
1,000
1,500
1,500
1,000 | N
N
N
L | 20
20
20
30
20 | 5
N
L
L
N | 20
N
10
15
20 | 30
10
20
20
30 | L
N
L
10
N | 300
N
500
150
200 | 300
1,000
200
300
500 | 100
70
100
100
70 | N
N
N
N | G1,000
G1,000
G1,000
G1,000
G1,000 | | 3019-80
3020-20
3020-80
3021-80
3022-80 | 70
N
20
L
10 | N
N
30
50
50 | 1,000
100
1,000
500
1,000 | L
N
5
L
L | 15
10
20
10
20 | N
10
L
N
N | 15
15
20
15
20 | 30
N
5
15
20 | N
N
10
N | 150
100
150
200
300 | 300
15
200
100
200 | 50
10
100
50
70 | N
N
N
N | G1,000
70
G1,000
700
G1,000 | | 3023-80
3024-80
3025-80
3026-80
3027-80 | 7
10
15
10
15 | 50
20
20
50
50 | 1,000
1,000
1,000
1,000 | N
N
N | 10
10
10
10 | 5
5
5
5 | 30
30
30
30
30 | 10
10
15
10
15 | N
N
N
N | 200
200
200
100
100 | 70
70
100
70
100 | 30
30
30
30
30 | N
N
N
N | 1,000
150
300
200
200 | | 3028-80
3029-80
3030-80
3031-80
3032-80 | 10
20
15
20
150 | 30
50
50
70
N | 700
1,500
1,000
1,500
700 | N
N
N
N | 15
15
10
15
10 | 5
5
L
10 | 30
30
30
20
N | 10
15
15
5 | N
N
N
N | 100
200
200
300
N | 50
150
150
150
500 | 20
30
30
20
50 | N
N
N
300 | 200
500
300
300
700 | | 3033-80
3034-80
3035-80
3036-80
4038-80 | 50
50
50
150
30 | 30
20
30
30
N | 1,000
1,500
700
700
700 | N
N
N
N | 15
15
10
10 | £
L
L | 20
30
30
10
20 | 5
10
5
5 | N
N
N
N | 300
500
300
L
300 | 200
200
150
300
150 | 20
30
50
30
50 | N
N
N
N | 300
1,000
300
700
200 | | 8039-80
8040-80
8041-80
8042-80
8043-80 | 5
15
15
15 |
20
20
50
70
20 | /00
700
700
1,500
500 | N
N
N
N | 10
10
15
15 | L
7
L
L | 30
30
30
20
20 | 10
10
15
30
15 | L
N
N
N | 100
100
200
100
100 | 70
70
100
100
70 | 20
20
30
70
30 | N
N
N
N | 150
300
700
G1,000
500 | | 3044-80
3047-80
3048-80
3049-80
3050-80 | 10
20
70
15
20 | 50
20
20
20
20 | 700
1,000
1,500
1,000
1,000 | N
N
N
N | 10
10
10
10 | 5
L
L
L | 30
10
10
30
30 | 15
10
15
15 | L
N
N
N | 200
N
200
200
300 | 70
100
300
150
150 | 50
30
30
30
30 | N
N
N
N | 200
300
300
300
300 | | 3051-80
3052-80
3053-80
3054-80
3055-80 | 20
30
5
50
15 | 20
20
30
20
30 | 1,000
1,000
1,000
1,500
1,000 | N
5
N
H | 15
15
15
20
10 | L
10
5
1 | 30
30
50
20
30 | 15
7
5
30
20 | N
150
10
L
L | 300
L
200
100
300 | 100
150
50
300
150 | 20
30
20
100
70 | N
N
N
N
5,000 | 500
300
150
500
300 | Table 3.—Spectrographic and chemical analyses of samples | Sample | Coordi | | | | nalyses | | | iquantitat | | | | | | |--|---------------------------------|---------------------------------|-------------------------|-------------------------|--------------------------|--------------------------|--|------------------------|---------------------------|---|-------------------------|-------------------------|---------------------------| | | X | Y | Au
(.02) | Çu
(10) | As
(10) | W
(20) | Fe
(500) | Ag
(0.5) | (10) | Ва
(20) | Be
(1) | Bi
(10) | (.o
(5) | | | | | | | | Stre | am sedimer | ntsConti | nued | | | | | | 3056-80
3057-80
3058-80
3060-80 | 169
158
166
174 | 144
139
139
146 | լ
Լ
Լ | լ
Լ
Լ | N
N
N | L
L
L
20 | 70,000
30,000
50,000
6200,000 | N
N
N | L
10
10 | 300
700
700
300 | 1.5
1.5
2
1.5 | N
N
N | 7
7
7
20 | | Average
of the a
samples | bove 59 | 9 | _ | 1.02 | 4.50 | 16.3 | 75,300 | (.02) | 9.24 | 542 | 1.40 | (.08) | 10 | | | | | | | | | Granitic | bedrock | | | | | | | 021
025
040
062
066 | 202
195
238
132
351 | 305
316
131
244
134 | ւ
ւ
ւ
ւ | լ
Լ
Լ
Լ | 10
L
10
L
10 | լ
Լ
Լ
Լ | 20,000
10,000
30,000
30,000
20,000 | N
N
N
N | L
L
L
L | 700
200
700
2,000
700 | L
L
1
3
2 | N
N
N
N | 5
5
10
5
5 | | 092
098
100
101
116 | 215
239
287
289
298 | 291
256
286
284
276 | L
L
.02
.08 | ւ
Լ
Լ
190 | L
L
N
N | L
N
N
L | 15,000
50,000
10,000
10,000 | N
N
N
N | L
10
L
L | 200
1,500
150
150
200 | 2
L
2
3
1.5 | N
N
N
N | 10
L
L
70 | | 206
225
231
1033
1042 | 091
85
336
232
289 | 244
214
267
196
126 | ւ | ւ
Լ
15
Լ
Լ | լ
Լ
Լ
Լ | N
N
L
20
L | 20,000
50,000
10,000
50,000 | N
N
30
N
N | 10
10
10
L
10 | 700
700
150
1,000
2,000 | 2
1.5
2
1 | N
N
150
N
N | 5
10
N
15
20 | | 1043
1046
1065
1083
1102 | 235
224
233
131
370 | 239
247
223
199
123 | .02
L
L
L | լ
14
Լ
Լ | L
L
L
10
L | L
L
L
L | 70,000
70,000
50,000
70,000
70,000 | N
N
N
N | լ
Լ
Լ
Լ | 2,000
2,000
700
1,000
1,500 | 1.5
1
1
2 | N
N
N
N | 15
10
10
5
15 | | 1106
1126
1129
1132
1135 | 219
289
286
325
325 | 173
164
280
277
263 | ւ
Լ
Լ
Լ | L
10
L
L
36 | L
N
N
N | L
L
N
N | 50,000
30,000
50,000
10,000
70,000 | N
N
N
N | 10
10
10
10 | 1,500
500
700
200
700 | L
1.5
2
2 | N
N
N
N | 10
7
7
L
20 | | 1136
1148
1191
1206
1212 | 329
250
122
89
308 | 260
178
157
116
229 | ւ
Լ
Լ
.02
Լ | L
L
10
L
14 | N
N
40
10
L | N
L
L
L | 10,000
70,000
15,000
30,000
20,000 | N
N
N
N | 10
10
L
L | 70
500
700
700
1,000 | 1.5
2
1
1 | N
N
N
N | L
15
7
15
20 | | 1283
2010
2032
2033
2529 | 342
207
301
296
271 | 205
153
177
179
161 | ւ
Լ
Լ
Լ | 13
L
L
10
L | 10
10
N
N | N
L
L
L | 70,000
70,000
20,000
30,000
20,000 | N
N
N
N | L
10
10 | 700
1,000
500
300
500 | 1
1.5
1.5 | N
N
N
N | 10
10
7
15
7 | | 2530
2531
3005
3037
3045 | 255
155
204
71
105 | 155
160
111
169
132 | և
Լ
Լ
Լ | L
20
L
L | N
N
N
N | ւ
ւ
ւ
ւ | 30,000
70,000
30,000
20,000
20,000 | N
N
N
N | 10
10
10
L | 300
200
300
500
300 | 1.5
1
1
2
2 | N
N
N
N | 10
20
10
10
L | | 8059
N-107
N-406
N-454B
KPa-9 | 175 | 143 | L | L | N | L | 50,000
20,000
3,000
30,000
30,000 | N
N
N
N | 10
10
10
N | 700
500
200
1,500
500 | 1.5
N
3
N
1 | N
N
N
N | 10
10
N
10 | | KPa-11
KPa-50
KPa-62
KPa-66
KPa-67 | | | | | | | 15,000
30,000
20,000
20,000
15,000 | 11
N
N
N | N
10
10
10 | 1,500
1,000
1,000
1,000
500 | 2
?
N
2
2 | N
N
N | N
7
5
5
2 | from the Sierra Demonstration Project area—Continued | Sample | | | | Semiq | uantitat | ive spe | ctrograp | hic anal | lyses (p | spm)Co | ntinued | | | | |--|---------------------------|-----------------------------|---------------------------------------|------------------------|----------------------------|--------------------------|----------------------------|--------------------------|-------------------|---------------------------------|---------------------------------|----------------------------|--------------------|--------------------------------| | | Cr
(5) | La
(20) | Mn
(10) | Mo
(5) | Nb
(10) | Ni
(5) | РЬ
(10) | Sc
(5) | Sn
(10) | Sr
(100) | V
(10) | Y
(10) | Zn
(200) | Zr
(10) | | | | | | | | | | ontinue | | | | | | | | 3056-80
3057-80
3058-80
3060-80 | 15
10
10
150 | 30
30
20
300 | 700
700
700
1,000 | N
5
20
5 | 10
10
15
15 | 5
5
L
5 | 30
30
30
10 | 5
10
15
30 | L
L
10
N | N
200
200
200 | 150
70
100
300 | 15
15
50
100 | L
N
N
700 | 300
70
300
700 | | | 59.8 | 51.9 | 957 | 2.82 | 19.5 | 10.7 | 25.7 | 12.3 | 2.72 | 275 | 155 | 39.7 | (24.2) | 354 | | | | | | | | Granit | ic bedro | ck | | | | | | | | 021
025
040
062
066 | 10
5
15
7
L | 50
L
20
30
20 | 300
100
700
700
700 | L
N
N | 10
L
10
10 | 5
7
15
L | 20
20
30
30
20 | 5
L
10
5 | L
N
N | 500
100
300
700
200 | 20
30
150
70
70 | L
15
10
20 | L
N
N | 20
20
70
150
70 | | 092
098
100
101
116 | L
10
5
5
150 | N
20
50
20
N | 300
700
500
500
1,500 | N
N
10
N | 10
10
10
10
N | 5
10
L
L
70 | 50
20
30
50
30 | N
10
5
5
30 | N
N
N
N | N
500
N
N
1,000 | 20
150
10
10
500 | N
10
15
15 | N
N
N
L | 20
70
70
30
30 | | 206
225
231
1033
1042 | 5
15
5
10
30 | 30
30
N
N
20 | 150
300
300
700
1,500 | N
N
L
N | L
L
L
20 | 7
10
5
7
10 | 15
15
70
20
30 | L
7
N
10
20 | N
N
N
N | 300
500
100
300
700 | 30
70
20
200
300 | L
10
N
15
50 | N
N
N
N | 150
100
10
200
150 | | 1043
1046
1065
1083
1102 | 20
20
15
10
7 | 50
50
L
20
70 | 1,000
700
1,000
700
1,000 | N
N
N
N | 15
10
L
20
15 | 10
10
5
5 | 30
20
50
30
15 | 15
7
10
5
15 | N
N
N
N | 500
500
700
700
500 | 200
200
200
100
200 | 30
L
10
20
30 | N
N
N
N | 70
50
20
300
200 | | 1106
1126
1129
1132
1135 | 10
10
L
5
15 | 50
20
30
20
20 | 700
1,000
1,000
500
1,500 | N
5
N
N
N | 10
10
10
10 | 7
5
5
5
20 | 30
30
20
30
20 | 7
15
10
5
20 | N
L
L
N | 500
300
1,000
N | 150
100
150
10
200 | 15
15
15
10
20 | N
N
N
N | 150
30
150
50 | | 1136
1148
1191
1206
1212 | L
7
10
10
20 | 30
20
50
30
100 | 300
700
700
500
700 | N
10
N
N | 15
10
10
20
10 | 5
5
10
10
15 | 30
30
10
15
20 | L
15
7
10 | N
N
N
N | N
500
200
200
500 | N
200
30
70
70 | 10
10
20
70
20 | N
N
N
N | 20
70
100
100 | | 1283
2010
2032
2033
2529 | 15
15
5
15 |
30
100
20
20
50 | 700
1,000
700
700
300 | N
N
N
5 | L
20
10
10 | 10
5
L
5
L | 15
50
30
30
30 | 10
7
7
10
10 | N
N
N
N | 500
500
200
300
200 | 150
150
50
100
100 | 15
50
20
20 | N
N
N
N | 100
200
100
70
200 | | 2530
2531
3005
3037
3045 | 10
50
15
7
L | 20
50
30
30
20 | 500
700
700
700
300 | N
N
N
N | 10
10
10
10
L | 15
10
5
5
L | 30
10
50
30
30 | 10
15
7
5 | N
N
N
N | 200
200
500
500
100 | 100
300
100
70
50 | 10
10
15
10
L | N
N
N | 100
20
100
70
30 | | 3059
A-107
A-406
A-454B
KPa-9 | 30
10
N
10
7 | N
N
50
50 | 700
500
300
700
500 | N
N
15
N
N | L
N
15
10
7 | 5
5
N
7
5 | 30
30
30
10
30 | 10
15
N
7
7 | N
N
N
N | 500
500
30
700
500 | 100
100
N
100
100 | 10
20
20
20
20 | N
N
N
N | 150
50
50
100
150 | | KPa-11
KPa-50
KPa-62
KPa-66
KPa-67 | 3
5
3
5
2 | N
N
50
30 | 300
500
300
500
300 | N
N
N
N | N
10
N
10
N | N
5
15
N
N | 50
30
50
50
30 | N
7
3
N
N | N
N
N
N | 300
700
500
300
300 | 20
70
50
30
30 | 10
15
7
15 | N
N
N
N | 100
150
100
100 | ${\tt TABLE~3.} {\it --Spectrographic~and~chemical~analyses~of~samples}$ | Sample | Coord | inates | Chem | ical ar | alyses | (ppm) | Semi | quantita | tive s | pectrograp | hic analys | ses (ppm) |) | |-------------------------------------|--------|--------|-------------|------------|------------|-----------|-------------|-------------|--------|------------|------------|------------|------| | | X | Y | Au
(.02) | Cu
(10) | As
(10) | W
(20) | Fe
(500) | Ag
(0.5) | (10) | Ba
(20) | Ве
(1) | B1
(10) | (5) | | | | | | | Gran | nitic | bedrockC | ontinued | | | | | | | KPa-74 | | | | | | | 20,000 | N | 15 | 500 | 2 | N | 5 | | KPa-79 | | | | | | | 30,000 | N | 10 | 700 | 2 | N | 10 | | KPa-84 | | | | | | | 15,000 | N | 10 | 500 | 1.5 | N | 5 | | KPa-89 | | | | | | | 30,000 | N | N | 300 | N | N | 15 | | KPa-96 | | | | | | | 15,000 | N | 10 | 700 | 1.5 | N | 5 | | KPa-97 | | | | | | | 15,000 | N | 10 | 700 | 1.5 | N | 3 | | KPa-98 | | | | | | | 5,000 | N | 10 | 500 | 1.5 | N | N | | KPa-99 | | | | | | | 15,000 | N | 10 | 700 | 1.5 | N | 3 | | KPa-100 | | | | | | | 20,000 | N | 10 | 1,000 | 1.5 | N | 7 | | KPa-102 | | | | | | | 7,000 | N | 10 | 1,000 | 2 | N | N | | KPa-103 | | | | | | | 10,000 | N | 10 | 700 | 2 | N | 2 | | KPb-10 | | | | | | | 30,000 | N | 10 | 1,000 | 2 | N | 10 | | KPb-26 | | | | | | | 30,000 | N | N | 500 | 1 | N | 10 | | KPb-34 | | | | | | | 20,000 | N | N | 1,500 | 1.5 | N | 7 | | (Pb-53 | | | | | | | 3,000 | N | N | 300 | 1.5 | N | N | | (Pb-59 | | | | | | | 30,000 | N | 10 | 1,000 | 1.5 | N | 10 | | (Pb-60 | | | | | | | 30,000 | N | 10 | 500 | N | N | 10 | | (Pb-61 | | | | | | | 30,000 | N | 10 | 500 | 1 | N | 10 | | (Pb-64 | | | | | | | 30,000 | N | 10 | 500 | 1 | N | 7 | | (Pb-74 | | | | | | | 30,000 | N | N | 1,500 | 2 | N | 10 | | (Pb-83 | | | | | | | 3,000 | N | N | 300 | 3 | N | N | | (Pc-l | | | | | | | 20,000 | N | N | 1,500 | 1.5 | N | 5 | | Pc-9 | | | | | | | 30,000 | N | N | 700 | 1.5 | N | 10 | | Pc-26 | | | | | | | 20,000 | N | N | 1,500 | 1 | N | 5 | | (Pc-30 | | | | | | | 30,000 | N | N | 700 | 1.5 | N | 10 | | (Pc-37 | | | | | | | 15,000 | N | 20 | 700 | 2 | N | 2 | | ⟨Pc-42 | | | | | | | 30,000 | N | 10 | 1,000 | 1.5 | N | 7 | | (Pc-50 | | | | | | | 20,000 | N | N | 500 | 2 | N | 3 | | (Pc-138 | | | | | | | 30,000 | N | N | 700 | | N | 7 | | (Pd-17 | | | | | | | 30,000 | N | 10 | 500 | 1.5 | N | 7 | | (Pd-50 | | | | | | | 30,000 | N | N | 500 | N | N | 10 | | KPd-51 | | | | | | | 30,000 | N | 10 | 700 | 1 | N | 10 | | (Pd-52 | | | | | | | 20,000 | N | 10 | 700 | 3 | N | 7 | | (Pd-61 | | | | | | | 20,000 | N | 10 | 700 | 3 | N | 7 | | Average m
of the ab
samples (| ove 84 | | | 11.9 | 2.68 | (8.29) | 30,000 | (0.36) | 7.0 | 08 751 | 1.45 | (1.79) | 7.7 | | | | | | | | Metamo | orphic bedr | ock | | | | | | | 051 | 360 | 155 | L | 12 | 10 | L | 70,000 | N | L | 1,000 | N | N | 20 | | 073 | 300 | 179 | L | L | 10 | L | 50,000 | N | L | 5,000 | L | N | 15 | | 125 | 313 | 190 | L | L | L | L | 50,000 | N | L | 2,000 | N | N | L | | 126 | 312 | 190 | L | 11 | 20 | L | 20,000 | N | L | 1,000 | N | N | N | | 133 | 303 | 162 | .02 | 14 | N | L | 700 | N | L | 1,000 | L | N | N | | 36 | 354 | 320 | L | 40 | N | L | 50,000 | N | L | 2,000 | L | N | 20 | | 204 | 273 | 230 | .08 | 186 | 10 | L | 100,000 | 3 | L | 1,000 | 2 | N | 15 | | 1052 | 367 | 149 | L | L | L | L | 50,000 | Ņ | L | 3,000 | 1 | N | 10 | | 1100 | 386 | 107 | L | 23 | 10 | L | 70,000 | N | L | 2,000 | L
, c | N | 20 | | 2031 | 302 | 171 | L | L | N | L | 50,000 | N | L | 300 | 1.5 | N | 20 | | 2518A | 305 | 175 | L | 10 | L | L | 15,000 | L | 15 | 300 | 2 | N | L | | 3046 | 103 | 132 | . 02 | L | N | Ĺ | 7,000 | N | 10 | 300 | 2 | N | L | | (Pb-37 | | | | | | | G200,000 | N | N | 700 | N | N | 30 | | РЬ-39 | | | | | | | G200,000 | N | 10 | 150 | 1.5 | N | 10 | | Average m
of the ab | | ontent | .018 | 26.8 | 6.25 | | 66,600 | (0.23) | 6.07 | 1,410 | 0.86 | | 12.0 | $from\ the\ Sierra\ Demonstration\ Project\ area -- Continued$ | Sample | | | | | | ive spec | | | | | | | | | |-----------------------------|-----------|------------|----------------|-----------|------------|-----------|------------------|-----------------|------------|--------------------|--------------------|-----------|-------------|------------| | | (5) | La
(20) | Mn
(10) | Mo
(5) | Nb
(10) | Ni
(5) | Pb
(10) | Sc
(5) | Sn
(10) | (100) | (10) | (10)
Y | Zn
(200) | Zr
(10) | | | | | | | Gra | onitic be | drock- | Continue | ed | | | | | | | KPa-74 | 5 | N | 300 | N | 10 | 15 | 50 | 5 | N | 500 | 50 | 15 | N | 100 | | KPa-79 | 10 | 30 | 500 | 2 | 10 | 7 | 30 | 7 | N | 500 | 100 | 20 | N | 100 | | KPa-84
KPa-89 | 5
10 | N
N | 300
700 | N
3 | 15
7 | 3
7 | 15
15 | 5
15 | N
N | 30 0
500 | 50
150 | 20
20 | N
N | 100
150 | | KPa-96 | 3 | 30 | 300 | N | 16 | 3 | 30 | 3 | N | 50 0 | 50 | 15 | N | 100 | | KPa-97 | 5 | Ŋ | 30 0 | N | N | 1.5 | 30 | 3 | N | 500 | 50 | N | N | 100 | | KPa-98 | 1 | N | 100 | N | N | N | 30 | N | N | 300 | 10 | N | N | 30 | | KPa-99 | 5 | 30 | 300 | N | N | 1.5 | 30 | 3 | N | 300 | 50 | 7
10 | N
N | 100 | | KPa-100
KPa-1 0 2 | 7
1.5 | 50
N | 300
200 | N
N | N
N | 2
N | 30
5 0 | 5
2 | N
N | 500
200 | 7 0
7 | 10 | N | 100 | | KPa-103 | 1.5 | i N | 300 | N | 10 | N | 30 | N | N | 300 | 15 | 10 | N | 70 | | KPb-10 | 10 | N | 500 | N | 10 | 10 | 50 | 7 | N | 300 | 100 | 20 | N | 100 | | KP6-26 | 10 | 30 | 700 | N | 10 | 5 | 20 | 15 | N | 300 | 100 | 20 | N | 100 | | KPb-34 | 5
N | N | 500 | N
N | 10 | N | 30 | 5
N | N | 500 | 70 | 15
15 | N
N | 150 | | KPb-53 | | 30 | 200 | | 10 | N | 50 | | N | 20 | 5 | - | | 70 | | KPb-59 | 15 | 100 | 500 | N | 10 | 10 | 50 | 10 | N | 200 | 100 | 20 | N | 100 | | KPb-60
KPb-61 | 20
20 | N
30 | 500
700 | N
N | 10
10 | 5
5 | 15
15 | 15
15 | N
N | 500
500 | 100
15 0 | 20
20 | N
N | 100
150 | | KPb-64 | 10 | 30 | 500 | N | 15 | 5 | 30 | 15 | N | 300 | 100 | 30 | N | 70 | | KPb-74 | 5 | N | 2,000 | N | 10 | 7 | 20 | ió | N | 300 | 100 | 20 | N | 150 | | KPb-83 | 3 | 30 | 500 | N | 15 | N | 20 | N | N | 20 | 5 | 30 | N | 70 | | KPc-1 | . 5 | 50 | 500 | N | N | N | 30 | . 7 | N | 150 | 30 | 20 | N | 100 | | KPc-9
KPc-26 | 10
7 | 50
N | 500
300 | N
N |) O
N | 7
5 | 30
50 | 10
5 | N
N | 200
200 | 100
5 0 | 30
15 | N
N | 150
100 | | KPc-30 | 7 | 50 | 500 | Ň | 10 | 7 | 30 | 10 | N | 200 | 70 | 30 | N | 150 | | KPc-37 | 1.5 | , N | 300 | N | N | N | 50 | N | N | 300 | 30 | 10 | N | 100 | | KPc-42 | 10 | 50 | 500 | N | 10 | 7 | 50 | 5 | N | 300 | 70 | 15 | N | 150 | | KPc-50 | 3 | 30 | 500 | N | 10 | 1 | 30 | 2 | N | 300 | 50 | 10 | N | 70 | | KPc-138
KPd-17 | 7
10 | N
N | 700
500 | N
N | 10
10 | N
3 | 20
30 | 5
10 | N
N | 500
300 | 70
100 | 15
20 | N
N | 70
150 | | KPd-50 | 10 | N | 700 | N | 7 | 7 | 20 | 15 | N | 300 | 150 | 30 | N | 150 | | KPd-51 | 10 | N | 500 | N | Ň | 5 | 20 | 10 | N | 500 | 100 | 20 | N | 150 | | KPd-52
KPd-61 | 5
7 | N
N | 500
700 | N
N | 10
N | 3
5 | 15
50 | 7
7 | N
N | 500
150 | 70
70 | 15
15 | N
N | 100 | | 0 01 | - | | - | | | | | | | | - | | | 98. | | | 11.0 | 24.3 | 580 | (o.77) | 8.29 | 7.61 | 30.2 | 7.52 | | 191 | 92. | 5 16.3 | | 90. | | | | | | | | Metamor | phic be | edro c k | | | | | | | | 051 | 20 | 30 | 1,500 | N | 20 | 10 | 20 | 20 | N | 700 | 300 | 30 | N | 150 | | 073 | 150 | 20 | 2,000 | N | N | 20 | 20 | 15 | N | 300 | 200 | 20 | 200 | 100 | | 125 | Ĺ | 200 | 1,000 | N | 20 | N | 30 | 10 | N | 700 | 70 | 70 | N | 500 | | 126 | L | 100 | 500 | N | 20 | N | 10 | 5 | N | 200 | 10 | 30 | N | 700 | | 133 | 20 | 50 | 100 | L | 10 | 10 | 15 | N | N | L | L | 10 | N | 150 | | 136
204 | 20
50 | 30
30 | 1,500 | N
EO | 10 | 10 | 20
15 | 20 | 3.0
N | 500
500 | 100
200 | 20
30 | N
L | 100
150 | | 1052 | 10 | 30
50 | 1,500 | 50
L | L
20 | 15
5 | 50 | 15
15 | 30
N | 150 | 100 | 50
50 | Ĺ | 300 | | 1100 | 150 | 20 | 1,500 | N | 10 | 50 | 20 | 20 | N | 500 | 200 | 30 | N | 150 | | 2031 | 7 | 30 | 1,500 | N | 10 | 7 | 50 | 15 | N | l. | 150 |
15 | 500 | 50 | | 2518A | 5 | 20 | 300 | N | 10 | 15 | 30 | 5 | Ŋ | 100 | 30 | L | N | 50 | | 3046 | 10 | 20 | 70 | N | L | L | N | L | N | N | 20 | L | N | 70 | | KPb-37
KPb-39 | 150
50 | i\
30 | 1,500
1,000 | N
N | 10
10 | 100
20 | 50
30 | 30
15 | N
N | 500
300 | 500
100 | 50
30 | ti
N | 150
150 | | 4)) | | - | | | | | | | | | 142 | 28.2 | | 198 | | | 46.2 | 45.0 | 1,210 | (3.93) | 11.4 | 18.9 | 25.7 | 12.3 | (2.1 | 4) 325 | 142 | 20.2 | (04.3) | 190 | Table 3.—Spectrographic and chemical analyses of samples | | Coordinates | | Chemical analyses | | | (ppm) | Semio | quantitati | ic analy | c analyses (ppr | | | | |---|--|---|---------------------|---|-------------------------------|---|--|--|--|---|---------------------------------|---------------------------------------|---------------------------------| | | X | Y | Au
(.02) | .Cu
(10) | As
(10) | W
(20) | Fe
(500) | Aq
(0.5) | B
(10) | Ba
(20) | Ве
(1) | Bi
(10) | Ço
(5) | | | | | | | | Miner | alized veir | 15 | | | | | | | 002 | 274 | 168 | L | 40 | 20 | L | 30,000 | 50 | 10 | 200 | L | 5 0 0 | 5 | | 33 | 269 | 171 | L | Ł | L | L | 50,000 | N | L | 50 | L | N | Ł | | 52 | 360 | 161 | .04 | L | 10 | 20 | 20,000 | 1 | L | 200 | N | 10 | L | | 57 | 351 | 180 | L | L | 20 | 40 | 50,000 | .7 | L | 70 | 1.5 | N | 20 | | 68 | 278 | 181 | L | 78 | 20 | 600 | 20,000 | 50 | L | 300 | 3 | 300 | L | | 99 | 288 | 284 | L | 10 | 10 | 20 | 30,000 | .5 | 10 | 100 | 1.5 | 300 | L | | 02 | 310 | 317 | .08 | 26 | 10 | Ł | 30,000 | 100 | L | 300 | 1.5 | 300 | Ļ | | 07
22 | 328 | 323 | L | 10 | Ĺ | L | 3,000 | N | 10 | 70 | 1 | N | L | | 32
38 | 308
355 | 154
305 | .02
L | 13
20 | N
N | 10
Н | 700
30,000 | 1.5
20 | L
10 | 500
20 0 | L
1.5 | N
700 | N
N | | _ | | | | | | | | | | | | • | | | 39 | 356 | 297 | L | 250 | N | H | 200,000 | 2 | N | 100 | L | N | 20 | | 64
4 r | 354 | 250 | L | Ł | L | L | 20,000 | N | 10 | 1,000 | 1.5 | N | 5 | | 65
79 | 339
041 | 246
123 | L
L | L
12 | 30
10 | 480 | 30,000 | N | L
20 | 200
500 | L
1.5 | N
N | 50
30 | | 79
36 | 157 | 269 | Ĺ | 11 | 80 | N
N | 100,000
3,000 | N
N | 10 | 70 | 1.5 | N
N | N N | | | | _ | | | | | | | | | • | | | | 08 | 120 | 226 | L | L | 20 | N | 70,000 | N | 15 | 500 | 1.5 | N | 7 | | 16 | 321 | 278 | L | 10 | 20 | 40 | 15,000 | N | L | 150 | 2 | N | N | | 087
111 | 186
282 | 263
304 | L
.04 | 17 | L
10 | L | 100,000 | ₂ .7 | 30 | 700 | 2
2 | N
30 | 15
5 | | 117 | 300 | 311 | L .04 | 20 | N | L | 20,000
20,000 | 7
2 | L
10 | 150
100 | 1.5 | N N | j
L | | | | - | | | | | • | | | | | | | | 175 | 348 | 262 | .02 | 35 | N | L | 100,000 | 50 | L. | 500 | Ļ | 1,000 | 20 | | 281
518-8 | 359 | 209 | L
L | L
15 | L
L | N
L | 150,000
20,000 | N
L | 10
10 | 300
150 | 1
15 | N
N | 7
L | | 0-010 | | | L | 15 | | L | 20,000 | L | 10 | 150 | 15 | N | | | f the a | bove 2 | content
3
eadnote | | 129 | 12.6 | 62.4 | 48,300 | 12.4 | 8.91 | 1 279 | 1.8 | 137 | 8.87 | | | | | | | | Miner | alized rock | · c | | | | | | | | | | | | | | | • | | | | | _ | | | | | | | | | | | | | | | | | | 384 | 336 | .02 | 15 | 20 | L | 70,000 | •5 | 15 | 200 | 1.5 | N | .7 | | 19 | 391 | 322 | L | L | N | Ł | 70,000 | N | L | 100 | 1.5 | N | 15 | | 19
20 | 391
396 | 322
317 | L
L | L
7 5 | N
N | L
L | 70,000
100,000 | N
N | L
L | 100
300 | 1.5 | N
N | 15
20 | | 19
20
2 7 | 391
396
313 | 322
317
191 | L
L
L | L
75
150 | N
N
20 | L
L
L | 70,000
100,000
50,000 | N
N
1 | L
L
10 | 100
300
1,500 | 1.5
2
N | N
N
N | 15
20
10 | | 19
20
2 7
49 | 391
396 | 322
317 | L
L | L
7 5 | N
N | L
L | 70,000
100,000 | N
N | L
L | 100
300 | 1.5 | N
N | 15
20 | | 19
20
2 7
49
17
verage | 391
396
313
323
330
metal | 322
317
191
130
263 | L
L
.02
L | 150
10
19 | N
N
20
N
N | L
L
L | 70,000
100,000
50,000
15,000 | N
N
1
N | L
10
L | 100
300
1,500
1,000
100 | 1.5
2
N
1 | N
N
N
N | 15
20
10
N | | f the a | 391
396
313
323
330
metal | 322
317
191
130
263 | .02
L | 150
10
19 | N
N
20
N
N | L
L
L | 70,000
100,000
50,000
15,000
150,000 | N
1
N
N | L
10
L
10 | 100
300
1,500
1,000
100 | 1.5
2
N
1
2 | N
N
N
N | 15
20
10
N | | 19
20
2 7
49
17
verage
f the a | 391
396
313
323
330
metal | 322
317
191
130
263
content | .02
L | 150
10
19 | N
N
20
N
N | L
L
L
N | 70,000
100,000
50,000
15,000
150,000 | N
N
1
N
N | L
10
L
10 | 100
300
1,500
1,000
100 | 1.5
2
N
1
2 | N
N
N
N | 15
20
10
N | | 19
20
27
49
17
verage
f the a
amples | 391
396
313
323
330
metal | 322
317
191
130
263
content | .02
L | L
75
150
10
19
19 | N
N
20
N
N
6.6 | L
L
L
N | 70,000
100,000
50,000
15,000
150,000
75,800 | N
N
1
N
N | L
10
L
10 | 100
300
1,500
1,000
100 | 1.5
2
N
1
2 | N
N
N
N | 15
20
10
N | | 19
20
27
49
17
verage
f the a
amples | 391
396
313
323
330
metal
above 6
(see h | 322
317
191
130
263
content
eadnote; | .02
L
.013 | L
75
150
10
19
45.7 | N
N
20
N
N | L
L
L
N
7 | 70,000
100,000
50,000
15,000
150,000
75,800 | N
N
I
N
N
0.25 | L
L
10
L
10
8.33 | 100
300
1,500
1,500
1000
100 | 1.5
2
N
1
2 | N
N
N
N
N | 15
20
10
N
N
8.6 | | 19
20
27
49
17
verage
f the a
amples | 391
396
313
323
330
metal
above 6
(see h | 322
317
191
130
263
content
eadnote; | .02 .013 | L
75
150
10
19
45.7 | N
N
20
N
N
6.6 | L
L
L
N
7 | 70,000
100,000
50,000
15,000
150,000
75,800 | N N N N N N N N N N N N N N N N N N N | L
L
10
L
10
8.33 | 100
300
1,500
1,500
100
3 533 | 1.5
2
N
1
2
1.33 | N N N N N N N N N N N N N N N N N N N | 15
20
10
N
N
8.6 | | 19
20
27
49
17
verage
f the a
amples | 391
396
313
323
330
metal
above 6
(see h | 322
317
191
130
263
content
eadnote;
168
282
247
248 | .02 .013 | L 75
150
10
19
45.7
45.7 | N N 20 N N 6.6 | L
L
N
7
2 ral spi
40
L
N | 70,000 100,000 50,000 15,000 150,000 75,800 | N
N
N
N
O.25 | L
10
L
10
8.33
L
L
200 | 100
300
1,500
1,000
100
3 533
3,000
10
150
N | 1.5
2
N
1
2
1.33 | N
N
N
N
 | 15
20
10
N
N
8.6 | | 19
20
27
49
17
verage
f the a
amples
03
43
66
80
87 | 391
396
313
323
330
metal
above 6
(see h
270
360
336
180
152 | 322
317
191
130
263
content
eadnote;
168
282
247
248
286 | .02 L .08 .02 L L L | L 75 150 10 19 45.7 | N N 20 N N 6.6 | L
L
L
N
7
40
L
L
N | 70,000 100,000 50,000 15,000 150,000 75,800 | N
N
N
N
O.25
Itates
NO
N
N | L
10
L
10
8.33
L
L
200
100 | 3,000
100
3,500
1,000
100
3,533
3,000
10
150
N | 1.5
2
N
1
2
1.33 | N
N
N
N
N
N
N
N | 15
20
10
N
N
8.6 | | 19
20
2 7
49
17
verage
f the a | 391
396
313
323
330
metal
above 6
(see h | 322
317
191
130
263
content
eadnote;
168
282
247
248 | .02 .013 | L 75
150
10
19
45.7
45.7 | N N 20 N N 6.6 | L
L
N
7
2 ral spi
40
L
N | 70,000 100,000 50,000 15,000 150,000 75,800 | N
N
N
N
O.25 | L
10
L
10
8.33
L
L
200 | 100
300
1,500
1,000
100
3 533
3,000
10
150
N | 1.5
2
N
1
2
1.33 | N
N
N
N
 | 15
20
10
N
N
8.6 | from the Sierra Demonstration Project area—Continued | Sample | Semiquantitative spectrographic analyses (ppm)Continued | | | | | | | | | | | | | | |---|---|------------------------------|---|-------------------------------|--------------------------------|-------------------------------|----------------------------|-------------------------------|------------------------|--|---|----------------------------------|----------------------------------
--| | | Cr
(5) | La
(20) | Mn
(10) | Mo
(5) | Nb
(10) | N i
(5) | РЬ
(10) | Sc
(5) | Sn
(10) | Sr
(100) | V
(10) | Y
(10) | Zn
(200) | Zr
(10) | | | | | | | | Mineral | ized ve | ins | | | 2 | | | | | 002
033
052
057
068 | L
5
L
5 | L
N
N
N | 500
700
200
200
150 | 200
5
50
150
700 | 20
†0
L
L | 10
5
5
5 | 70
20
30
N
50 | 5
5
L
N
5 | L
N
N | 200
500
L
100
100 | 30
100
30
50
70 | L
L
N
L | L
N
N | L
L
20
N
20 | | 099
102
107
132
138 | 5
L
10
15 | N
N
N
N | 70
150
20
100
1,000 | 100
7
70
50
500 | 10
10
10
L | 5
5
5
5 | 20
100
N
10
50 | L
L
N | N
N
N | N
100
N
100
700 | N
10
10
15
30 | L
N
N
L
L | N
200
N
N | 100
5
N
20
20 | | 139
164
165
179
186 | 20
20
15
10
5 | N
20
N
20
N | 1,000
1,000
700
2,000
100 | 200
10
5
7
30 | L
10
20
20
L | 5
7
5
10
5 | 20
20
15
N
L | 15
15
15
L | N
N
N
N | L
500
300
300
N | 300
50
70
100
10 | N
L
10
15
N | N
N
N
H | 15
70
15
20
N | | 208
216
1087
1111
1117 | 15
5
30
L
5 | 50
70
N
50
20 | 500
100
1,500
300
150 | 20
10
10
1,500
7 | L
10
10
10 | 7
5
15
5 | 20
N
20
100
30 | 5
N
15
5
L | N
N
N
15
N | 300
N
300
N
L | 100
15
200
15
20 | 10
L
15
10
L | N
N
N | 150
100
200
50
N | | 1175
1281
2518-B | 10
10
5 | N
20
20 | 500
1,000
500 | 5
5
N | 10
L
10 | 5
5
5 | 200
70
N | 5
30
5 | N
N
N | 300
700
100 | 100
300
20 | 15
L | N
N | 50
50
30 | | | 9.0 | 2 12.6 | 6 541 | 158 | 9.56 | 6.04 | 37.0 | 5.76 | (1.09 | 9) 213 | 75.2 | 5. | 87 (17.4 | 4) 41. | | | | | | | | Mineral | ized ro | cks | | | | | | | | 118
119
120
127
149
217 | 150
150
200
15
15 | 20
30
30
100
50 | 2,000
1,500
2,000
1,000
200
65,000 | L
L
5
10 | L
10
10
15
10
L | 50
70
70
5
7
L | 10
10
N
20
15 | 7
10
10
30
5
N | N
N
N
N
N | 500
500
100
1,500
150
N | 150
200
200
200
200
15
20 | 50
50
30
50
15
30 | N
300
300
N
N
300 | 300
150
150
150
100
150 | | | 89.2 | 38. | 3 1,950 | 5.41 | 9.17 | 34.1 | 10.8 | 10.3 | (2.5) | 458 | 131 | 37. | 5 150 | 167 | | | | | | | Miner | al spri | ng prec | ipitates | - | | | | | | | 003
143
166
180
187
1149 | 10
N
10
10
10 | L
N
N
N
20
20 | 5,000
5,000
1,000
3,000
150
2,000 | 30
N
10
N
50
N | 10
L
L
N
L | 5
N
L
5
5 | L
10
10
20
10 | L
N
5
L
5 | 20
N
N
N
N | 1,500
200
1,500
1,000
1,500
5,000 | 10
10
L
20
50
20 | L
10
L
10
L | L
N
N
N
N | 50
15
N
30
30 | | | 7.5 | 8.33 | 2,690 | 15 | 5.83 | 3.33 | 10.8 | 5.00 | (3.33) | 1,780 | 19.2 | 6. | 67 | 24.2 | ${\bf TABLE~3.} \color{red} -Spectrographic~and~chemical~analyses~of~samples$ | Sample | Coordinates | | Chem | ical ar | nalyses | (ppm) | Semiquantitative spectrographic analyses (ppm). | | | | | | | | | |-----------------------------|-------------|-----|-------------|------------|------------|-----------|---|-------------|-----------|------------|-----------|------------|-----------|--|--| | | Х | Y | Au
(.02) | Cu
(10) | As
(10) | W
(20) | Fe
(500) | Ag
(0.5) | B
(10) | Ba
(20) | Be
(1) | Bi
(10) | Co
(5) | | | | | | | | | | Trachyb | asalt flows | <u>.</u> | | | | | | | | | 169 | 363 | 234 | 0.90 | 35 | L | N | 100,000 | N | 10 | 1,000 | 1 | N | 50 | | | | 236 | 262 | 180 | L | 53 | L | N | 100,000 | N | L. | 700 | 1 | N | 30 | | | | 1015 | 204 | 302 | L | L | N | L | 50,000 | N | L | 700 | L | N | 20 | | | | 1270 | 177 | 239 | L | 45 | L | N | 100,000 | N | 10 | 700 | 1.5 | N | 20 | | | | 4-419A | | | | | | | 70,000 | N | N | 1,500 | N | N | 50 | | | | KPa-52 | | | | | | | G200,000 | N | 10 | 1,500 | 1.5 | N | 30 | | | | KPa-85 | | | | | | | G200,000 | N | N | 1,500 | 1.5 | N | 50 | | | | KPb-1 | | | | | | | G200,000 | N | N | 3,000 | 2 | N | 30 | | | | KPb-14 | | | | | | | G200,000 | N | 10 | 2,000 | 1.5 | N | 30 | | | | KPb-18 | | | | | | | G200,000 | N | N | 2.000 | 2 | N | 50 | | | | Average of the also samples | bove 10 | | (0.22) | 34.5 | | | (142,000) | | 5.0 | 1,460 | 1.25 | | 36. | | | | | | | | | Air | -transpo | rted pumice | bomb | | | | | | | | | 198 | 237 | 308 | L | L | 40 | N | 30,000 | N | 20 | 700 | 2 | N | N | | | | | | | | | <u>e</u> | lacial s | and and gra | ve l | | | | | | | | | 015-P | 107 | 200 | L | - | N | Ł | 200,000 | N | 20 | 70 | L | N | 20 | | | | 017-P | 104 | 195 | 0.04 | 11 | N | Ĺ | 200,000 | N | 20 | 50 | Ĺ | N | 20 | | | | 200-80 | 269 | 220 | L | Ĺ | Ĺ | Ĺ | 100,000 | N | 10 | 700 | 2 | N | 7 | | | | | | | | | Vein qua | artz peb | ble in glac | ial till | | | | | | | | | 069-в | 282 | 178 | 04 | L | L | L | 10,000 | N | L | 200 | И | N | N | | | | | | | | | Soil | above | granitic be | drock | | | | | | | | | 173-80 | 054 | 154 | Ł | 10 | N | 20 | 70,000 | N | 10 | 1,000 | 1.5 | N | 10 | | | from the Sierra Demonstration Project area—Continued | Sample | | Semiquantitative spectrographic analyses (ppm)Continued | | | | | | | | | | | | | | |--------|-----------|---|------------|-----------|------------|-----------|------------|-----------|-------------|-------------|-----------|-----------|-------------|------------|--| | | Cr
(5) | La
(20) | Mn
(10) | Mo
(5) | Nb
(10) | Ni
(5) | Pb
(10) | Sc
(5) | \$n
(10) | Sr
(100) | V
(10) | Y
(10) | Zn
(200) | Zr
(10) | | | | | | | | | Trachyl | basalt fl | ows | | | | | | | | | 169 | 300 | 50 | 700 | N | L | 300 | 10 | 15 | N | 700 | 150 | 20 | N | 150 | | | 236 | 300 | 50 | 700 | N | ī | 200 | 15 | 20 | N | 1,000 | 200 | 15 | N | 150 | | | 1015 | 300 | 50 | 1,000 | Ë | ī | 50 | 20 | 10 | Ê | 500 | 50 | 10 | Ĺ | 30 | | | 1270 | 200 | 50 | 700 | N | ī | 150 | 15 | 20 | N | 1,000 | 200 | 15 | N | 150 | | | A-419A | 700 | 50 | 1,000 | N | 7 | 300 | 7 | 30 | N | 1,500 | 300 | 20 | N | 150 | | | KPa-52 | 500 | 100 | 1,000 | N | Ń | 500 | 50 | 20 | N | 1,500 | 300 | 20 | N | 200 | | | KPa-85 | 700 | 70 | 1,000 | N | 15 | 500 | 30 | 30 | N | 1,000 | 500 | 30 | N | 200 | | | KPb-1 | 500 | 100 | 700 | N | Ň | 500 | 50 | 20 | N | 1,500 | 300 | 20 | Ň | 200 | | | KPb-14 | 500 | 50 | 1,000 | N | N | 200 | 50 | 20 | N | 1,000 | 300 | 30 | N | 150 | | | KPb-18 | 700 | 100 | 1,000 | N | 15 | 500 | 20 | 30 | N | 1,000 | 500 | 30 | N | 200 | | | | 400 | 67.0 | 083 | | 5.7 | 320 | 26.7 | 21.5 | | 1,070 | 280 | 21.0 | | 158 | | | | | | | | Air- | transpo | orted pun | nice boml | b | | | | | | | | 198 | 5 | 70 | 500 | 10 | 15 | L | 50 | L | N | 200 | 15 | 20 | N | 500 | | | | | | | | G î | acial: | sand and | gravel | | | | | | | | | 015-P | 200 | L | 300 | 5 | 20 | 20 | L | 20 | L | 100 | 300 | 20 | L | 200 | | | 017-P | 150 | Ĺ | 200 | 7 | 10 | 5 | Ĺ | 5 | į | 100 | 300 | 30 | Ĺ | 300 | | | 200-80 | 20 | 50 | 300 | Ń | 10 | 10 | 15 | 5 | N | 300 | 100 | 20 | N | 300 | | | 200 00 | 20 | ,0 | 500 | ., | 10 | , 0 | ,, | , | " | J 00 | | 20 | ., | 500 | | | | | | | | Vein qua | rtz pel | bble in g | lacial | till | | | | | | | | 069-в | L | N | 500 | N | N | L | N | N | N | N | 10 | N | N | N | | | | | | | | Soil | above | granitic | bedroci | <u>k</u> | | | | | | | | 173-80 | 20 | 50 | 700 | N | 10 | 10 | 15 | 10 | N | 500 | 100 | 20 | N | 30C | |